СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВЛИЯНИЯ ЦЕСТОД, ОБИТАЮЩИХ В КИШЕЧНИКАХ РАЗЛИЧНЫХ ВИДОВ РЫБ, НА АКТИВНОСТЬ ПРОТЕОЛИТИЧЕСКИХ ФЕРМЕНТОВ
PDF

Ключевые слова

рыбы
цестоды
протеолитическая активность
ингибиторы протеиназ

Аннотация

Установлено, что шесть исследованных видов цестод (Proteocephalus torulosus (Batsch, 1786), P. sagittus (Grimm, 1872), P. cernuae (Gmelin, 1790), Eubothrium rugosum (Batsch, 1786), Triaenophorus nodulosus (Pallas, 1781), Caryophyllaeus laticeps (Pallas, 1781)), обитающих в кишечниках рыб (елец Leuciscus leuciscus L., голец Barbatula barbatula L., ёрш Gymnocephalus cernuus L., синец Ballerus ballerus L., налим Lota lota L., щука Esox lucius Linnaeus, лещ Abramis brama L.), изменяют активность протеолитических ферментов слизистой оболочки кишечника хозяина. Независимо от направленности влияния цестод на протеолитическую активность слизистой оболочки кишечника их хозяев (снижение или повышение этой активности при заражении) важная составляющая влияния – способность всех исследованных цестод ингибировать протеолитическую активность хозяев и активность коммерческого препарата трипсина. Для некоторых видов цестод эффект ингибирующей способности сопоставим с аналогичным влиянием синтетического ингибитора сериновых протеиназ – PMSF.

https://doi.org/10.31857/S0044452922030032
PDF

Литература

Уголев АМ, Кузьмина ВВ (1993) Пищеварительные процессы и адаптации у рыб. С-П.: Гидрометеоиздат. 238 с. [Ugolev AM, Kuz’mina VV (1993) Digestive processes and adaptations in fish. S-P: Hydrometeoisdate. 238 p. (In Russ)].

Solovyev MM, Kashinskaya EN, Rogozhin EA, Moyano FJ (2021) Seasonal changes in kinetic parameters of trypsin in gastric and agastric fish. Fish Physiol Biochem 47:381–391. https://doi.org/10.1007/s10695-020-00919-0

Izvekova GI, Solovyev MM (2016) Characteristics of the Effect of Cestodes Parasitizing the Fish Intestine on the Activity of the Host Proteinases. Biol Bulletin 43(2):146–151. https://doi.org/10.1134/S1062359016010076

Hawley JH, Peanasky AJ (1992) Ascaris suum: are trypsin inhibitors involved in species specificity of ascarid nematodes? Exp Parasitol 75(1):112–118. https://doi.org/10.1016/0014-4894(92)90126-U

Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716. https://doi.org/10.1042/BJ20031825

Molehin AJ, Gobert GN, McManus DP (2012) Serine protease inhibitors of parasitic helminthes. Parasitology 139(6):681–695. https://doi.org/10.1017/S0031182011002435

Morris SR, Sakanari JA (1994) Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J Biologic Chem 269(44):27650–27656.

Zang X, Maizels RM (2001) Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. TRENDS Biochem Sci 26(3):191–197. https://doi.org/10.1016/S0968-0004(00)01761-8

Zhang Y, Guo J, He L, Zong H-Y, Cai G-B (2018) Isolation and characterization of a novel serine protease inhibitor, SjSPI, from Schistosoma japonicum. Parasitol Int 67:415–424. https://doi.org/10.1016/j.parint.2018.04.002

Cuesta-Astroz Y, de Oliveira F, Nahum LA, Oliveira G (2017) Helminth secretomes reflect different lifestyles and parasitized hosts. Int J Parasitol 47:529–544. https://doi.org/10.1016/j.ijpara.2017.01.007

Ranganathan S, Garg G (2009) Secretome: clues into pathogen infection and clinical applications. Genome Medicine 1:113. https://doi.org/10.1186/gm113

Dezfuli BS, Bosi G, DePasquale JA, Manera M, Giari L (2016) Fish innate immunity against intestinal helminthes. Fish & Shellfish Immunol 50:274–287. https://doi.org/10.1016/j.fsi.2016.02.002

Bosi G, Shinn AP, Giari L, Dezfuli BS (2015) Enteric neuromodulators and mucus discharge in a fish infected with the intestinal helminth Pomphorhynchus laevis. Parasites & Vectors 8:359. https://doi.org/10.1186/s13071-015-0970-7

Dezfuli BS, Lui A, Giari L, Pironi F, Manera M, Lorenzoni M, Noga EJ (2013) Piscidins in the intestine of European perch, Perca fluviatilis, naturally infected with an enteric worm. Fish & Shellfish Immunol 35:1539–1546. https://doi.org/10.1016/j.fsi.2013.08.023

Rascón Jr, McKerrow JH (2013) Synthetic and natural protease inhibitors provide insights into parasite development, virulence and pathogenesis. Curr Med Chem 20:3078–3102. https://doi.org/10.1007/s00436-018-6169-z

Kochneva A, Drozdova P, Borvinskaya E (2020) The first transcriptomic resource for the flatworm Triaenophorus nodulosus (Cestoda: Bothriocephalidea), a common parasite of holarctic freshwater fish. Marine Genomics 51:100702. https://doi.org/10.1016/j.margen.2019.100702

Xu J, Wu L, Sun Y, Wei Y, Zheng L, Zhang J, Pang Z, Yang Y, Lu Y (2020) Proteomics and bioinformatics analysis of Fasciola hepatica somatic proteome in different growth phases. Parasitol Res 119:2837–2850. https://doi.org/10.1007/s00436-020-06833-x

Bień J, Sałamatin R, Sulima A, Savijoki K, Conn DB, Näreaho A, Młocicki D (2016) Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminuta reveals their immunogenic properties and the presence of new E-S proteins in cestodes. Acta Parasitol 61(2):429–442. https://doi.org/10.1515/ap-2016-0058

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.

Alarcón FJ, Martínez TF, Barranco P, Cabello T, Díaz M, Moyano FJ (2002) Digestive proteases during development of larvae of red palm weevil, Rhynchophorus errugineus (Olivier, 1790) (Coleoptera: Curculionidae). Insect Biochem Mol Biol 32:265–274. https://doi.org/10.1016/S0965-1748(01)00087-X

Izvekova GI, Frolova TV, Izvekov EI (2017) Inactivation of proteolytic enzymes by Eubothrium rugosum (Batsch, 1786) (Cestoda) from the gut of burbot Lota lota (Linnaeus). Folia Parasitol 64:016. https://doi.org/10.14411/fp.2017.016

Izvekova GI, Frolova TV, Zhokhov AE (2018) Proteinase Activity in the Intestine of Ruff Gymnocephalus cernuus (L.) (Pisces) Depending on the Sum Length of Cestodes Proteocephalus cernuae (Gmelin) Parasitizing the Gut. Inland Water Biology 11(1):87–91. https://doi.org/10.1134/S1995082918010066

Извекова ГИ, Куклина ММ (2014) Заражение цестодами и активность пищеварительных гидролаз позвоночных хозяев. Успехи современной биологии 134(3):304–315. [Izvekova GI, Kuklina MM (2014) Infection with cestodes and the activity of digestive hydrolases of vertebrate hosts. Successes of modern biology 134 (3): 304–315. (In Russ)].

Richards KS, Arme C (1981) The ultrastructure of the scolex-neck syncytium, neck cells and frontal gland cells of Caryophyllaeus laticeps (Caryophyllidea: Cestoda). J Parasitol 83:477–487.

Давыдов ВГ (1986) Сравнительное изучение реакции тканей кишечника рыб при разных способах прикрепления ленточных червей. Биология и экология водных организмов. Л. Наука. [Davydov VG (1986) Comparative study of the reaction of fish intestinal tissues in various methods of attaching tapeworms. Biology and ecology of aquatic organisms. L. Science. (In Russ)].

Bosi G, Shinn AP, Giari L, Simoni E, Pironi F, Dezfuli BS (2005) Changes in the neuromodulators of the diffuse endocrine system of the alimentary canal of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), naturally infected with Eubothrium crassum (Cestoda). J Fish Dis 28:703–711. https://doi.org/10.1111/j.1365-2761.2005.00674.x

Huang SY, Yue DM, Hou JL et al. (2019) Proteomic analysis of Fasciola gigantica excretory and secretory products (FgESPs) interacting with buffalo serum of different infection periods by shotgun LC-MS/MS. Parasitol Res 118:453–460. https://doi.org/10.1007/s00436-018-6169-z

Rogozhin E, Solovyev M, Frolova T, Izvekova G (2019) Isolation and partial structural characterization of new Kunitz-type trypsin inhibitors from the pike cestode Triaenophorus nodulosus. Molec & Biochem Parasitol 233(111217):1–4. https://doi.org/10.1016/j.molbiopara.2019.111217