ПОЛОВОЙ ДИМОРФИЗМ ИЗМЕНЕНИЙ СТРЕСС-ГОРМОНАЛЬНОЙ И КОГНИТИВНОЙ ФУНКЦИЙ У ВЗРОСЛЫХ КРЫС, ПОДВЕРГНУТЫХ ВОСПАЛИТЕЛЬНОЙ БОЛИ В НОВОРОЖДЕННОМ ВОЗРАСТЕ
PDF

Ключевые слова

неонатальная воспалительная боль
взрослые крысы
кортикостерон
пространственное обучение и память

Аннотация

Настоящая работа посвящена исследованию влияний умеренного неонатального болевого стресса, вызванного у новорожденных самцов и самок крысят созданием очага воспалительной боли, на стрессовую реактивность гормонального ответа и когнитивные процессы в водном лабиринте Морриса во взрослом состоянии. Полученные данные указывают на отсутствие значимых различий в показателях пространственного обучения и памяти между подопытными крысами, подвергнутыми неонатальной воспалительной боли, и контрольными животными. Однако у подопытных крыс обнаружены половые различия в пространственной долговременной памяти, эффективность которой была выше у самцов, чем у самок. После тестирования долговременной памяти, реактивность гипоталамо-гипофизарно-адренокортикальной системы, оцененная по содержанию гормона стресса кортикостерона в плазме крови в ответ на формалиновый тест, у подопытных самцов была выше, чем у самок. Только у подопытных самок обнаружены различия между показателями кратковременной и долговременной памяти, с более высокой эффективностью кратковременной памяти. Таким образом, обнаружен половой диморфизм во влиянии неонатального болевого стресса на пространственную долговременную память у взрослых крыс; у подопытных самцов по сравнению с подопытными самками выявлена более эффективная долговременная память, сочетающаяся с более высокой стрессовой реактивностью гормонального ответа.

https://doi.org/10.31857/S0044452922020036
PDF

Литература

Fitzgerald M (2015) What do we really know about newborn infant pain? Exp Physiol 100: 1451–1457. https://doi.org/10.1113/ep085134

De Kort AR, Joosten EAJ, Patijn J, Tibboel D, van den Hoogen NJ (2021) The development of descending serotonergic modulation of the spinal nociceptive network: a life span perspective. Pediatr Res Online ahead of print. https://doi.org/10.1038/s41390-021-01638-9

Brewer CL, Baccei ML (2020) The development of pain circuits and unique effects of neonatal injury. Neural Transmission (Vienna) 127:467–479. https://doi.org/10.1007/s00702-019-02059-z

Schwaller F, Fitzgerald M (2014) The consequences of pain in early life: injury-induced plasticity in developing pain pathways. Eur J Neurosci 39:344–352. https://doi.org/10.1111/ejn.12414

Williams MD, Lascelles BDX (2020) Early Neonatal Pain-A Review of Clinical and Experimental Implications on Painful Conditions Later in Life. Front Pediatr 7:8–30. https://doi.org/10.3389/fped.2020.00030

Mooney-Leber SM, Brummelte S (2017) Neonatal pain and reduced maternal care: Early-life stressors interacting to impact brain and behavioral development. Neuroscience 7:21–36. https://doi.org/10.1016/j.neuroscience.2016.05.001

Grunau RE, Holsti L, Haley DW, Oberlander T, Weinberg J, Solimano A, Whitfield MF, Fitzgerald C, Yu W (2005) Neonatal procedural pain exposure predicts lower cortisol and behavioral reactivity in preterm infants in the NICU. Pain 113:293–300. https://doi.org/10.1016/j.pain.2004.10.020

Brummelte S, Chau CMY, Cepeda IL, Cecil MY, Chau, Degenhardt A, Weinberg J, Synnes AR, Grunau RE (2015) Cortisol levels in former preterm children at school age are predicted by neonatal procedural pain-related stress. Psychoneuro-endocrinology 51:151–163. https://doi.org/10.1016/j.psyneuen.2014.09.018

Herrington СJ, Olomu IN, Geller SM (2004) Salivary cortisol as indicators of pain in preterm infants: a pilot study. Clin Nurs Res 13:53–68. https://doi.org/10.1177/1054773803259665

Grunau RE, Cepeda IL, Chau CM, Brummelte S, Weinberg J, Lavoie PM, Ladd M, Hirschfeld AF, Russell E, Koren G, Van Uum S, Brant R, Turvey SE (2013) Neonatal pain-related stress and NFKBIA genotype are associated with altered cortisol levels in preterm boys at school age. PLoS One 8:9. https://doi.org/10.1371/journal.pone.0073926

Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409. https://doi.org/10.1038/nrn2647

Victoria NC, Inoue K, Young LJ, Murphy AZ (2013) Long-term dysregulation of brain corticotrophin and glucocorticoid receptors and stress reactivity by single early-life pain experience in male and female rats. Psychoneuroendocrinology 38:3015–3028. https://doi.org/10.1016/j.psyneuen.2013.08.013

Timmers I, Quaedflieg CWE, Hsu MC, Heathcote LC, Rovnaghi CR, Simons LE (2019) The interaction between stress and chronic pain through the lens of threat learning. Neurosci Biobehav Rev 107:641–655. https://doi.org/10.1016/j.neubiorev.2019.10.007

Van Bodegom M, Homberg JR, Henckens MJAG (2017) Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front Cell Neurosci 11:87. https://doi.org/10.3389/fncel.2017.00087

Akirav I, Kozenicky M, Tal D, Sandi C, Venero C, Richter-Levin G (2004) A facilitative role for corticosterone in the acquisition of a spatial task under moderate stress. Learn Mem 11:188–195. http://www.learnmem.org/cgi/doi/10.1101/lm.61704

Grunau RE, Whitfield MF, Petrie-Thomas J, Synnes AR, Cepeda IL, Keidar A, Rogers M, Mackay M, Hubber-Richard P, Johannesen D (2009). Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain 143:138–146. https://doi.org/10.1016/j.pain.2009.02.014

Ranger M, Grunau RE (2014) Early repetitive pain in preterm infants in relation to the developing brain. Pain Manag 4:57–67. https://doi.org/10.2217/pmt.13.61

Bonapersona V, Kentrop J, Van Lissa CJ, Van der Veen R, Joëls M, Sarabdjitsingh RA (2019) The behavioral phenotype of early life adversi ty: A 3-level meta-analysis of rodent studies. Neurosci Biobehav Rev 102:299–307. https://doi.org/10.1016/j.neubiorev.2019.04.021

Fitzgerald E, Sinton MC , Wernig-Zorc S , Morton NM , HolmesMC , Boardman JP , Drake AJ (2021) Altered hypothalamic DNA methylation and stress-induced hyperactivity following early life stress. Epigenetics Chromatin 14(1):31. https://doi.org/10.1186/s13072-021-00405-8

Khawla Q, Alzoubi NKH, Alhusban A, Bawaane A, Al-Azzani M, Khabour OF (2017) Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin. Physiol Behav 179:213–219. https://doi.org/10.1016/j.physbeh.2017.06.015

Grunau RE, Holsti L, Peters JW (2006) Long-term consequences of pain in human neonates. Sem. Fetal. Neonatal Med 11:268–275. https://doi.org/10.1016/j.siny.2006.02.007

Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW (2007) Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr. Res 62:283–290. https://doi.org/10.1203/pdr.0b013e3180986d2f

Henderson YO, Victoria NC, Inoue K, Murphy AZ, Parent MB (2015) Early life inflammatory pain induces long-lasting deficits in hippocampal-dependent spatial memory in male and female rats. Neurobiol Learn Mem 118:30–41. https://doi.org/10.1016/j.nlm.2014.10.010

Amaral C, Antonio B, Oliveira MGM, Haman C, Guinsburg R, Covolan L (2015) Early postnatal nociceptive stimulation results in deficits of spatial memory in male rats Neurobiol. Learn Mem 125:120–125. https://doi.org/10.1016/j.nlm.2015.08.012

Tjølsen A, Berge O-G, Hunskaar S (1992) The formalin test: an evaluation of the method. Pain 51:5–17. https://doi.org/10.1016/0304-3959(92)90003-t

Roca-Vinardell A, Berrocoso E, Llorca-Torralba M, García-Partida JA, Gibert-Rahola J, Mico JA (2018) Involvement of 5-HT1A/1B receptors in the antinociceptive effect of paracetamol in the rat formalin test. Neurobiol Pain 3:15–21. https://doi.org/10.1016/j.ynpai.2018.01.004

Chen M, Xia D, Min C, Zhao X, Chen Y, Liu L, Li X (2016) Neonatal repetitive pain in rats leads to impaired spatial learning and dysregulated hypothalamic-pituitary-adrenal axis function in later life. Sci Rep 14:39159. https://doi.org/10.1038/srep39159

Xia D, Min C, Chen Y, Ling R, Chen M, Li X (2020) Repetitive pain in neonatal male rats impairs hippocampus-dependent fear memory later in life. Front Neurosci 14:722. https://doi.org/10.3389/fnins.2020.00722

Mogil JS (2020) Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nature Rev Neurosci 21:353–365. https://doi.org/10.1038/s41583-020-0310-6

Mikhailenko VA, Butkevich IP, Vershinina EA (2021). Studying the effect of neonatal inflammatory pain on cognitive processes and the reactivity of the hypothalamic-pituitary-adrenal system in rats of prepubertal age. J. Evol Biochem Physiol 57: 031–1039. https://doi.org/10.31857/S0044452921050041

Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn and Motivat 12:239–260. https://doi.org/10. 1016/0023-9690(81)90020-5

Butkevich I, Mikhailenko V, Semionov P, Bagaeva T, Otellin V, Aloisi AM (2009) Effects of maternal corticosterone and stress on behavioral and hormonal indices of formalin pain in male and female offspring of different ages. Horm Behav 55:149–157. https://doi.org/10.1016/j.yhbeh.2008.09.008

Vorhees CV, Williams MT (2014) Assessing spatial learning and memory in rodents. ILAR J 55:310–332. https://doi.org/10.1093/ilar/ilu013

Butkevich IP, Mikhailenko VA, Vershinina EA, Barr GA (2021) The Long-Term Effects of Neonatal Inflammatory Pain on Cognitive Function and Stress Hormones Depend on the Heterogeneity of the Adolescent Period of Development in Male and Female Rats. Front Behav Neurosci 15:691578. https://doi.org/10.3389/fnbeh.2019.00125

Basbaum AI, Jessell TM (2000) The perception of pain. Principles of neural science. Eds: E. R. Kandel, J. H. Schwartz, T. M. Jessell. New York: McGraw-Hill Comp. 472–481.

Drutel G, Peitsaro N, Karlstedt K, Wieland K, Smit MJ, Timmerman H (2001) Identification of rat H3 receptor isoforms with different brain expression and signaling properties. Mol Pharmacol 59:1–8. https://doi.org/10.1124/mol.59.1.1

Rapanelli M, Frick LR, Horn KD, Schwarcz RC, Pogorelov V, Nairn AC (2016) The Histamine H3 receptor differentially modulates Mitogen-activated Protein Kinase (MAPK) and act signaling in striatonigral and striatopallidal neurons. J Biol Chem 291:21042–21052. https://doi.org/10.1074/jbc.m116.731406

Koutmani Y, Gampierakis IA, Polissidis A, Ximerakis M, Koutsoudaki PN, Polyzos A, Agrogiannis G, Karaliota S, Thomaidou D, Rubin LL, Politis PK, Karalis KP (2019) CRH Promotes the Neurogenic Activity of Neural Stem Cells in the Adult Hippocampus. Cell Rep 29:932–945.e7. https://doi.org/10.1016/j.celrep.2019.09.037

Hrabovszky E, Wittmann G, Turi GF, Liposits Z, Fekete C (2005) Hypophysiotropic Thyrotropin-Releasing Hormone and Corticotropin-Releasing Hormone Neurons of the Rat Contain Vesicular Glutamate Transporter-2. Endocrinology 146:341–347. https://doi.org/10.1210/en.2004-0856

Behuet S, Cremer, JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K (2019) Developmental Changes of Glutamate and GABA Receptor Densities in Wistar Rats. Front Neuroanat 13:100. https://doi.org/10.3389/fnana.2019.00100

Verhaeghe R, Gao V, Morley-Fletcher S, Bouwalerh H, Van Camp G, Cisani F, Nicoletti F, Maccari S (2021) Maternal stress programs a demasculinization of glutamatergic transmission in stress-related brain regions of aged rats. Geroscience 13:1–23. https://doi.org/10.1007/s11357-021-00375-5

Lu J, Goula D, Sousa N, Almeida OFX (2003) Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neuroscience 121:123–131. https://doi.org/10.1016/s0306-4522(03)00421-4

Dührsen L, Simons SH, Dzietko M, Genz K, Boos V, Sifringer M, Tibboel D, Felderhoff-Mueser U (2013) Effects of repetitive exposure to pain and morphine treatment 742 on the neonatal rat brain. Neonatology 103:35–43. https://doi.org/10.1159/000341769

Gulchina Y, Xu S-J, Snyder MA, Elefant F, Gao W-J (2017) Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J Neurochem 143:320–333. https://doi.org/10.1111/jnc.14101

Green MR, McCormick CM (2016) Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamic-pituitary-adrenal axis in the rat. Gen Comp Endocrinol 234:110–116. https://doi.org/10.1016/j.ygcen.2016.02.004

Nelson LH, Lenz KH (2017) The immune system as a novel regulator of sex differences in brain and behavioral development. J Neurosci Res 95:447–461. https://doi.org/10.1002/jnr.23821

Wang K, Xu F, Campbell SP, Hart KD, Durham TD, Maylie J, Xu J (2020) Rapid actions of anti-Müllerian hormone in regulating synaptic transmission and long-term synaptic plasticity in the hippocampus. FASEB J 34:706–719. https://doi.org/10.1096/fj.201902217R

Butkevich IP, Mikhailenko VA, Vershinina EA (2020) Combination of Stressors in the Critical Periods of Development Increases Resistance to Inflammatory Pain Stress in Adult Rats. Neuroscie Behav Physiology 50:1090–1097. https://doi.org/10.1007/s11055-020-01010-0

Nederhof E, Schmidt MV (2012) Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiol Behav 106:691–700. https://doi.org/10.1016/j.physbeh.2011.12.008

Daskalakis NP, Bagot RC, Parker KJ (2013) The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 38:1858–1873. https://doi.org/10.1016/j.psyneuen.2013.06.008

Sokołowski A, Folkierska-Żukowska M, Jednoróg K, Moodie, CA, Dragan W Ł (2020) The relationship between early and recent life stress and emotional expression processing: A functional connectivity study. Cogn Affect Behav Neurosci 20:588–603. https://doi.org/10.3758/s13415-020-00789-2