СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О КЛЕТКАХ ПЕРИНЕВРИЯ: ОСОБЕННОСТИ ПРОИСХОЖДЕНИЯ, СТРУКТУРА И ФУНКЦИИ
PDF

Ключевые слова

периневрий
периферический нерв
спинномозговой ганглий
спинномозговой корешок
гемато-невральный барьер
клаудин
окклюдин
клетки нервного гребня
мезенхима

Аннотация

Целью настоящей обзорной статьи явилось обощение современных представлений о клетках одной из оболочек периферического нерва – периневрия. Актуальность темы связана с недостатком фундаментальных знаний об участии этих клеток в восстановлении поврежденных нервных проводников, а также с необходимостью выяснения молекулярных механизмов стимуляции регенерации нервов после повреждений. В обзоре представлены данные последних лет о морфофункциональных особенностях периневрия, о происхождении клеток периневрия в фило- и онтогенезе, о молекуляных особенностях регуляции гемато-неврального барьера. Подчеркивается уникальность онтогенетического происхождения периневрия. Дана характеристика иммуногистохимических маркеров, используемых для идентификации клеток периневрия. Описаны особенности периневрия спинномозговых ганглиев и корешков спинного мозга.

https://doi.org/10.31857/S0044452922010053
PDF

Литература

Берснев ВП, Хамзаев РИ, Борода ЮИ (2009) Результаты эпиневрального шва седалищного нерва. Вестник хирургии им. И.И. Грекова 168 (1): 61-63 [Bersnev VP, Hamzaev RI, Boroda JuI (2009) Rezul'taty jepinevral'nogo shva sedalishhnogo nerva. Vestnik hirurgii im. I.I. Grekova 168 (1): 61–63 (In Russ)].

Щаницын ИН, Иванов АН, Бажанов СП, Нинель ВГ, Пучиньян ДМ, Норкин ИА (2017) Cтимуляция регенерации периферического нерва: современное состояние, проблемы и перспективы. Успехи физиол наук 48 (3): 92-112 [ Shchanitsyn IN, Ivanov AN , Bazhanov SP, Ninel VG, Puchin’jan DM, Norkin IA (2017) Stimulation of peripheral nerve regeneration: current status, problems and perspectives. Uspekhi fiziologicheskih nauk 48(3): 92–112 (In Russ)].

Shchudlo NA, Borisova IV, Shchudlo MM (2013) Morphometric assessment of the effectiveness of post-traumatic regeneration of peripheral nerves using single and repeated courses of electrostimulation. Neuroscience and Behavioral Physiology 43(9): 1097–1101. https://doi.org/ 10.1007/s11055-013-9855-4

Литвиненко ИВ, Одинак ММ, Живолупов СА, Булатов АР, Рашидов НА, Бардаков СН (2018) Клинико-инструментальные характеристики травматических поражений периферических нервов конечностей. Вестник Российской Военно-медицинской академии. 3 (63): 50-56 [Litvinenko IV, Odinak MM, Zhivolupov SA, Bulatov AR, Rashidov NA, Bardakov SN (2018) Clinical and instrumental characteristics of traumatic lesions of peripheral nerves of limbs. Vestnik Rossiyskoy Voyenno-meditsinskoy akademii. 3 (63): 50–56 (In Russ)].

Ништ АЮ, Чирский ВС, Фомин НФ (2019) Морфологические основы восстановления двигательной иннервации при травмах периферических нервов. Журнал анатомии и гистопатологии 8(4): 66–73. s://doi.org/ 10.18499/2225-7357-2019-8-4-66-73 [Nisht AYu, Chirskii VS, Fomin NF (2019) Morphological foundations of restoration of motor innervation in injuries of peripheral nerves. Journal of Anatomy and Histopathology 8 (4): 66-73(In Russ)].

Pannese E (1981) The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biol 65: 1–111. s://doi.org/ 10.1007/978-3-642-67750-2.

Ноздрачев АД, Чумасов ЕИ (1999) Периферическая нервная система. СПб: Наука [Nozdrachev AD, Chumasov EI (1999) Perifericheskaja nervnaja sistema. SPb: Nauka (In Russ)]

Челышев ЮА, Сайткулов КИ (2000) Развитие, фенотипическая характеристика и коммуникации шванновских клеток. Успехи физиол наук 31(3): 54–69 [Chelyshev YuA, Saitkulov KI Development, phenotypic characteristics and communication of Schwann cells (2000) Uspekhi fiziologicheskih nauk 31 (3): 54–69 (In Russ)].

Zochodne DW (2008) Neurobiology of peripheral nerve regeneration. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo: Cambridge University Press.

Reina MA, Arriazu R, Collier CB, Sala-Blanch X, Izquierdo L, de Andrés J (2013) Electron microscopy of human peripheral nerves of clinical relevance to the practice of nerve blocks. A structural and ultrastructural review based on original experimental and laboratory data. Rev. Esp Anestesiol Reanim 60(10): 552–562. s://doi.org/ 10.1016/j.redar.2013.06.006

Petrova ES (2019)Current views on Schwann cells: development, plasticity, functions. J Evol Biochem Phys 55: 433–447. https://doi.org/10.1134/S0022093019060012

Чумасов ЕИ, Колос ЕА, Петрова ЕС, Коржевский ДЭ (2020) Иммуноморфология периферической нервной системы. СПб: СпецЛит [Chumasov EI, Kolos EA, Petrova ES, Korzhevskij DE (2020) Immunomorfologiya perifericheskoj nervnoj sistemy. SPb: SpecLit]

Bhatheja K, Field J (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38: 1995–1999. s://doi.org/10.1016/j.biocel.2006.05.007

Salzer JL (2015) Schwann cell myelination. Cold Spring Harb. Perspect Biol. 7 (8): a020529. s://doi.org/10.1101/cshperspect.a020529

Shanthaveerappa TR, Bourne GH (1966) Perineural epithelium: a new concept of its role in the integrity of the peripheral nervous system. Science 154(3755): 1464–1467.

Kundalić B, Ugrenović S, Jovanović I, Stefanović N, Petrović V, Kundalić J, Stojanović V, Živković V, Antić V (2014) Morphometric analysis of connective tissue sheaths of sural nerve in diabetic and nondiabetic patients. Biomed Res Int: 870930. s://doi.org/ 10.1155/2014/870930

Pinã-Oviedo S, Ortiz-Hidalgo C (2008) The normal and neoplastic perineurium. A review. Adv. Anat. Pathol 15:147–164. s://doi.org/ 10.1097/PAP.0b013e31816f8519

Berthold C-H, Fraher J P, King RHM, Rydmark M (2005) Microscopic anatomy of the peripheral nervous system, in Peripheral Neuropathy, P J Dyck and PK Thomas Eds, Elsevier Health Sciences: 35–91.

Ubogu EE (2020) Biology of the human blood-nerve barrier in health and disease. Exp Neurol 328: 113272. s://doi.org/10.1016/j.expneurol.2020.113272

Barros CS, Franco SJ, Müller U (2011) Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 3(1):a005108. s://doi.org/ 10.1101/cshperspect.a005108

Bove GM, Light AR (1995) Calcitonin Gene-Related peptide and peripherin immunoreactivity in nerve sheaths. Somatosensory and Motor Research 12 (1): 49–57. https://doi.org/ 10.3109/08990229509063141.

Reina MA, Boezaart AP, Tubbs RS, Zasimovich Y, Fernández-Domínguez M, Fernández P, Sala-Blanch X (2019) Another (internal) epineurium: beyond the anatomical barriers of nerves. Clin Anat 33(2):199–206. s://doi.org/ 10.1002/ca.23442

Sala-Blanch X, Reina MA, Ribalta T, Prats-Galino A (2013) Sciatic nerve structure and nomenclature: epineurium to paraneurium: is this a new paradigm? Reg Anesth Pain Med 38 (5):463–465. s://doi.org/ 10.1097/AAP.0b013e3182a1b6c5.

Затолокина МА (2016) Морфогенез изменений параневральных соединительнотканных структур периферических нервов в эволюционном аспекте. Курск: КГМУ. [Zatolokina MA (2016) Morfogenez izmenenij paranevral'nyh soedinitel'notkannyh struktur perifericheskih nervov v jevoljucionnom aspekte. Kursk: KGMU (In Russ)].

Murthy NK, Spinner RJ (2020) Letter to the editor: the paraneurium (circumneurium) and its clinical implications with benign and malignant nerve lesions. Clin Anat. Online ahead of print. s://doi.org/ 10.1002/ca.23639

Reina MA, Boezaart A, Nin OC, Zasimovich Y, Sala-Blanch X (2020) Yet another perineural layer: so what? Reg Anesth Pain Med 45(6):483–484. s://doi.org/ 10.1136/rapm-2019-100765

Krnjevic K (1954) The connective tissue of the frog sciatic nerve. Q J Exp Physiol Cogn Med Sci 39(1): 55–72. s://doi.org/ 10.1113/expphysiol.1954.sp001048

Marani E, Lakke EAJF. Peripheral Nervous System In: JK Mai and G.Paxinos The human nervous system. Elsevier, Amsterdam .2012: 82–140

Kucenas S (2015) Perineurial glia. Cold Spring Harb Perspect Biol 7(6): a020511. https://doi.org/ 10.1101/cshperspect.a020511

Shanthaveerappa TR, Bourne GH (1963) Demonstration of perineural epithelium in whale and shark peripheral nerves . Nature197: 702–703. s://doi.org/ 10.1038/197702a0

Kucenas S, Takada N, Park HC, Woodruff E, Broadie K, Appel B (2008) CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci 11:143–151. https://doi.org/ 10.1038/nn2025

Binari LA, Lewis GM, Kucenas S (2013) Perineurial glia require Notch signaling during motor nerve development but not regeneration. J Neurosci 33(10):4241–4252. s://doi.org/ 10.1523/JNEUROSCI.4893-12.2013

Du Plessis DG, Mouton YM, Muller CJ, Geiger DHJ (1996) An ultrastructural study of the development of the chicken perineurial sheath. Anat: 189 ( Pt 3): 631–641.

Server A, Reina MA, Boezaart AP, Prats-Galino A, Esteves Coelho M, Sala-Blanch X (2018) Microanatomical nerve architecture of 6 mammalian species: Is trans-species translational anatomic extrapolation valid? Reg Anesth Pain Med 43(5):496–501. s://doi.org/ 10.1097/AAP.0000000000000772

Чумасов ЕИ (1975) О структуре периневрия периферической нервной системы. Арх анатомии гистологии и эмбриологии 68 (4): 29–34 [Chumasov EI (1975) On the structure of the perineurium of the peripheral nervous system. Arch of Anatomy, Histology and Embryology 68 (4): 29–34 (In Russ)].

Takebe K, Nio-Kobayashi Y, Takanashi-Iwanaga H, Iwanaga T (2006) Histochemical demonstration of a monocarboxylate transporter in the mouse perineurium with special reference to GLUT1. Biomedical Res 29 (6): 297–306. s://doi.org/10.2220/biomedres.29.297

Topp KS, Boyd BS (2012) Peripheral nerve: from the microscopic functional unit of the axon to thebiomechanically loaded macroscopic structure. J Hand Ther 25(2):142–151; quiz 152. https://doi.org/ 10.1016/j.jht.2011.09.002

Должиков АА, Должикова ИН (2018) Периневрий периферических нервов: фундаментальные и прикладные вопросы его морфологии и функций. Актуальные проблемы гуманитарных и естественных наук 9: 54–62. [ Dolzhikov AA, Dolzhikova IN (2018) Perinevrij perifericheskih nervov: fundamental'nye i prikladnye voprosy ego morfologii i funkcij. Aktual'nye problemy gumanitarnyh i estestvennyh nauk 9: 54–62 (In Russ)].

Dixon JS, Jen PY, Gosling JA (1998) Immunohistochemical characteristics of human paraganglion cells and sensory corpuscles associated with the urinary bladder. A developmental study in the male fetus, neonate and infant. J Anat 192 (3): 407–415. s://doi.org/ 10.1046/j.1469-7580.1998.19230407.x

Vega JA, Del Valle ME, Haro JJ, Naves FJ, Calzada B, Uribelarrea R (1994) The inner-core, outer-core and capsule cells of the human Pacinian corpuscles: an immunohistochemical study. Eur J Morphol 32(1):11–18.

Terminologia histological. Международные термины по цитологии и гистологии человека с официальным списком русских эквивалентов (2009) Под ред. В. В. Банина, В. Л. Быкова. М.: ГЭОТАР-Медиа. [Terminologia histological. Mezhdunarodnye terminy po citologii i gistologii cheloveka s oficial'nym spiskom russkih ekvivalentov (2009) Pod red. V. V. Banina, V. L. Bykova. M.: GEOTAR-Media (In Russ)].

Matejčík V, Haviarová Z, Kuruc R, Šteňo A, Šteňo J (2019) The composition and structure of peripheral nerves. In: Intraspinal Variations of Nerve Roots. Springer, Cham: 3–13.

Suter TACS, Jaworski A (2019) Cell migration and axon guidance at the border between central and peripheral nervous system. Science 365(6456):eaaw8231. s://doi.org/ 10.1126/science.aaw8231

Andres KH (1967) On the fine structure of the arachnoidea and dura mater of mammals. Z Zellforsch Mikrosk Anat 79(2): 272–295.

McCabe JS, Low FN (1969) The subarachnoid angle: an area of transition in peripheral nerve. Anat Rec 164 (1):15–33. s://doi.org/ 10.1002/ar.1091640102

Haller FR, Low FN (1971) The fine structure of the peripheral nerve root sheath in the subarachnoid space in the rat and other laboratory animals. Am J Anat 131(1):1–19. https://doi.org/ 10.1002/aja.1001310102

Умовист МН, Чайковский ЮБ Современные представления о строении и функции оболочек нерва (1987) Архив анатомии, гистологии и эмбриологии 1: 98–96. [Umovist MN, Tchaikovsky YB Modern concepts of the structure and function of the nerve sheaths (1987) Archive of anatomy, histology and embryology 1: 98–96 (In Russ)].

Bechter K, Schmitz B (2014) Cerebrospinal fluid outflow along lumbar nerves and possible relevance for pain research: case report and review. Croat Med J 55(4): 399–404. s://doi.org/ 10.3325/cmj.2014.55.399

Mizisin AP, Weerasuriya A (2011) Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol 121 (3): 291–312. s://doi.org/ 10.1007/s00401-010-0783-x

Pettersson CA (1993) Sheaths of the spinal nerve roots. Permeability and structural characteristics of dorsal and ventral spinal nerve roots of the rat. Acta Neuropathol 85(2): 129–137. s://doi.org/ 10.1007/BF00227759

Zakharov A, Papaiconomou C, Djenic J, Midha R, Johnston M (2003) Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol Appl Neurobiol 29(6):563–573. s://doi.org/ 10.1046/j.0305-1846.2003.00508.x

Frater JL, Hall GS, Procop GW (2001) Histologic features of zygomycosis: emphasis on perineural invasion and fungal morphology. Arch Pathol Lab Med 125 (3): 375–378. https://doi.org/ 10.1043/0003-9985(2001)125<0375:HFOZ>2.0.CO;2.

Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JA, Batzloff M, Ulett GC, Beacham IR (2014) Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 27(4): 691–726. https://doi.org/ 10.1128/CMR.00118-13

Schmitt M, Neubauer A, Greiner J, Xu X, Barth TF, Bechter K (2011) Spreading of acute myeloid leukemia cells by trafficking along the peripheral outflow pathway of cerebrospinal fluid. Anticancer Res 31(6):2343–2345.

Brown IS (2016) Pathology of perineural spread. .J Neurol Surg B Skull Base 77(2): 124–130. https://doi.org/ 10.1055/s-0036-1571837

Reale E, Luciano L, Spitznas M (1976) Freeze-fracture aspects of the perineurium of spinal ganglia. J Neurocytol 5: 385–394. s://doi.org/ 10.1007/BF01181646

Arvidson B (1979) A study of the perineurial diffusion barrier of a peripheral ganglion. Acta Neuropathol 46(1-2):139–144. s://doi.org/ 10.1007/BF00684815

Weerasuriya A, Mizisin AP (2011) The blood-nerve barrier: structure and functional significance. Methods Mol Biol 686: 149–173. s://doi.org/ 10.1007/978-1-60761-938-3_6

Masliukov PM, Emanuilov AI, Madalieva LV, Moiseev KY, Bulibin AV, Korzina MB, Porseva VV, Korobkin AA, Smirnova VP (2014) Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience 256: 271–281. s://doi.org/ 10.1016/j.neuroscience.2013.10.013.

Nikolaev SI, Gallyamov AR, Mamin GV, Chelyshev YuA (2014) Poly(ε-caprolactone) nerve conduit and local delivery of VEGF and FGF2 genes stimulate neuroregeneration. Bulletin of Experimental Biology and Medicine 157 (1): 155–158. s://doi.org/ 10.1007/s10517-014-2513-1

Емануйлов АИ, Маслюков ПМ, Ноздрачев АД (2019) Симпатическая иннервация сердца в раннем постнатальном онтогенезе. Российский физиологический журнал им. И.М. Сеченова 105(9): 1133–1141. [Emanuylov AI, Maslyukov PM, Nozdrachev AD (2019) Sympathetic innervation of the heart in early postnatal ontogenesis. Russian Journal of Physiology 105 (9): 1133-1141(In Russ)]. s://doi.org/ 10.1134/S086981391909005X

Pummi KP, Heape AM, Grenman RA, Peltonen JT, Peltonen SA (2004) Tight junction proteins ZO-1, occludin, and claudins in developing and adult human perineurium. J Histochem Cytochem 52 (8): 1037–1046. s://doi.org/ 10.1369/jhc.3A6217.2004

Tsukita S, Tanaka H, Tamura A (2019) The claudins: from tight junctions to biological systems.Trends Biochem Sci 44(2):141–152. s://doi.org/ 10.1016/j.tibs.2018.09.008

Alanne MH, Pummi K, Heape AM, Grenman R, Peltonen J, Peltonen S (2009) Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem 57 (6): 523–529. https://doi.org/ 10.1369/jhc.2009.951681

Hirakawa H, Okajima S, Nagaoka T, Takamatsu T, Oyamada M (2003) Loss and recovery of the blood-nerve barrier in the rat sciatic nerve after crush injury are associated with expression of intercellular junctional proteins. Exp Cell Res 284 (2): 196–210. s://doi.org/ 10.1016/s0014-4827(02)00035-6

Lux TJ, Hu X, Ben-Kraiem A, Blum R, Chen JT, Rittner HL (2020) Regional differences in tight junction protein expression in the blood-DRG barrier and their alterations after nerve traumatic injury in rats . Int J Mol Sci: 21(1). pii: E270. s://doi.org/ 10.3390/ijms21010270.

Sauer RS, Krug SM, Hackel D, Staat C, Konasin N, Yang S, Niedermirtl B, Bosten J, Günther R, Dabrowski S, Doppler K, Sommer C, Blasig IE, Brack A, Rittner HL (2014) Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood-nerve-barrier permeability. J Control Release 185: 88–98. s://doi.org/ 10.1016/j.jconrel.2014.04.029

Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H, Miyachi Y, Furuse M, Tsukita S (2005) Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J Cell Biol 169(3): 527–538. s://doi.org/ 10.1083/jcb.200501154.

Reinhold AK, Schwabe J, Lux TJ, Salvador E, Rittner HL (2018) Quantitative and microstructural changes of the blood-nerve barrier in peripheral neuropathy. Front Neurosci 12: 936. s://doi.org/ 10.3389/fnins.2018.00936. eCollection 2018.

Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. Journal of Cell Biology 133 (1): 43–47. https://doi.org/ 10.1083/jcb.133.1.43

Mazzeo A, Rodolico C, Monici MC, Migliorato A, Aguennouz M, Vita G (1997) Perineurium talin immunoreactivity decreases in diabetic neuropathy. J Neurol Sci 1997 146 (1): 7–11. s://doi.org/ 10.1016/s0022-510x(96)00285-7

Jaakkola S, Savunen O, Halme T, Uitto J, Peltonen J 1993 Basement membranes during development of human nerve: Schwann cells and perineurial cells display marked changes in their expression profiles for laminin subunits and beta 1 and beta 4 integrins. J. Neurocytol. 22(3): 215–230. s://doi.org/ 10.1007/BF01246360

Nagaoka T, Oyamada M, Okajima S, Takamatsu T (1999) Differential expression of gap junction proteins connexin26, 32, and 43 in normal and crush-injured rat sciatic nerves. Close relationship between connexin43 and occludin in the perineurium. J Histochem Cytochem 47(7): 937–948. s://doi.org/ 10.1177/002215549904700711

Stark B, Carlstedt T, Cullheim S, Risling M (2000) Developmental and lesion-induced changes in the distribution of the glucose transporter Glut-1 in the central and peripheral nervous system. Exp Brain. Res. 131(1):74–84. s://doi.org/10.1007/s002219900300

Muona P, Sollberg S, Peltonen J, Uitto J (1992) Glucose transporters of rat peripheral nerve. Differential expression of GLUT1 gene by Schwann cells and perineural cells in vivo and in vitro. Diabetes 41: 1587–1596. s://doi.org/ 10.2337/diab.41.12.1587.

Muona P, Jaakkola S, Salonen V, Peltonen J (1993) Expression of glucose transporter 1 in adult and developing human peripheral nerve. Diabetologia 36: 133–140. s://doi.org/ 10.1007/BF00400694

Tserentsoodol N, Shin BC, Koyama H, Suzuki T, Takata K (1999) Immunolocalization of tight junction proteins, occludin and ZO-1, and glucose transporter GLUT1 in the cells of the blood-nerve barrier. Arch Histol Cytol 62(5):459–469. s://doi.org/ 10.1679/aohc.62.459.

Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T (2008) Histochemical demonstration of a monocarboxylate transporter in the mouse perineurium with special reference to GLUT1. Biomed Res 29(6): 297–306. s://doi.org/ 10.2220/biomedres.29.297

Achtstätter T, Fouquet B, Rungger-Brändle E, Franke WW 1989 Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurialand arachnoidal sheaths of some vertebrate species. Differentiation. 40(2):129–149. s://doi.org/ 10.1111/j.1432-0436.1989.tb00822.x

Kovalenko VL, Shevtsov VI, Shchudlo MM, Shchudlo NA (2000) Reactive properties of epi- and perineurium: experimental and morphological basis for nerve suture technique. Bulletin of Experimental Biology and Medicine 130(2): 793–797. s://doi.org/ 10.1007/BF02766098

Thomas PK, Bhagat S (1978) The effect of extraction of the intrafascicular contents of peripheral nerve trunks on perineurial structure. Acta Neuropathol (Berl) 43: 135–141. https://doi.org/ 10.1007/BF00685008

Clark JK, O'Keefe A, Mastracci TL, Sussel L, Matise MP, Kucenas S (2014) Mammalian Nkx2.2+ perineurial glia are essential for motor nerve development. Dev Dyn 243(9): 1116–1129. s://doi.org/ 10.1002/dvdy.24158

Anderson W.A., Willenberg A.R., Bosak A.J., Willenberg B.J., Lambert S. Use of a capillary alginate gel (CapgelTM) to study the three-dimensional development of sensory nerves reveals the formation of a rudimentary perineurium. J Neurosci Methods. 2018. 305: 46–53. s://doi.org/10.1016/j.jneumeth.2018.05.003

Fontenas L, Kucenas S (2021) Spinal cord precursors utilize neural crest cell mechanisms to generate hybrid peripheral myelinating glia. Elife 10: e64267. s://doi.org/ 10.7554/eLife.64267.

Peltonen S, Alanne M, Peltonen J (2013) Barriers of the peripheral nerve. Tissue Barriers 1:e24956. ://dx.doi.org/10.4161/tisb.24956

Sima A, Sourander P (1973) The effect of perinatal undernutrition on perineurial diffusion barrier to exogenous protein. An experimental study on rat sciatic nerve. Acta Neuropathol 24 (3): 263–272. s://doi.org/ 10.1007/BF00687596.

Sima A, Sourander P (1974) The permeability of perineurium to peroxidase after early undernutrition. An ultrastructural study on rat sciatic nerve. Acta Neuropathol28(1):15–23. https://doi.org/ 10.1007/BF00687514.

Le Douarin NM (1986) Cell line segregation during peripheral nervous system ontogeny. Science 231: 1515–1522

Le Douarin NM, Dupin E (2012) The neural crest in vertebrate evolution. Curr Opin Genet Dev 22(4): 381–389. s://doi.org/ 10.1016/j.gde.2012.06.001

Etchevers HC, Dupin E, Le Douarin NM (2019) The diverse neural crest: from embryology to human pathology. Development 146(5): dev169821. s://doi.org/ 10.1242/dev.169821

Petersen J, Adameyko I (2017) Nerve-associated neural crest: peripheral glial cells generate multiple fates in the body. Curr Opin Genet Dev 45: 10–14. s://doi.org/ 10.1016/j.gde.2017.02.006

Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand E-L, Lee K-F, Meijer D, Anderson DJ, Morrison SJ (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells . Development 131(22): 5599–5612. s://doi.org/ 10.1242/dev.01429

Dupin E, Sommer L (2012) Neural crest progenitors and stem cells: from early development to adulthood. Developmental Biology 366 (2012) 83–95. s://doi.org/ 10.1016/j.ydbio.2012.02.035

Le Douarin NM, Dupin E (2018) The "beginnings" of the neural crest. Dev Biol. 444 (1): S3-S13. s://doi.org/ 10.1016/j.ydbio.2018.07.019

Graham A (2003) The neural crest. Curr Biol 13(10): R381–384. s://doi.org/ 10.1016/s0960-9822(03)00315-4

Graham A, Begbie J, McGonnell I (2004) Significance of the cranial neural crest. Dev Dyn 229(1): 5–13. s://doi.org/ 10.1002/dvdy.10442

Чумасов ЕИ (1976) Морфология периневрия в органотипической культуре чувствительных ганглиев. В кн: Тканевая биология. Тарту. С.79–82.

Чумасов ЕИ, Коновалов ГВ (1977) Морфология нервной ткани в культуре. Культура нервной ткани. М. Медицина: 63-127. [Chumasov EI, Konovalov GV (1977) Morfologiya nervnoj tkani v kul'ture. Kul'tura nervnoj tkani. M. Medicina: 63-127 (In Russ)].

Bunge MB,Wood PM, Tynan LB, Bates ML, Sanes JR (1989) Perineurium originates from fibroblasts: Demonstration in vitro with a retroviral marker. Science 243: 229–231. https://doi.org/ 10.1126/science.2492115.

Kazamel M, Boes CJ (2017) Renaut Corpuscles or Peripheral Nerve Infarcts? A Historical Overview. Can J Neurol Sci 44(2): 184–189. s://doi.org/ 10.1017/cjn.2016.406.

Петрова ЕС (2012) Применение стволовых клеток для стимуляции регенерации поврежденного нерва. Цитология 54 (7): 525–540. [Petrova ES (2012) The use of stem cells to stimulate the regeneration of the damaged nerve. Tsitologiya 54 (7): 525–540.

Petrova ES (2015) Injured nerve regeneration using cell-based therapies: current challenges. Acta Naturae 7 (3 (26)): 38–47. s://doi.org/ 10.32607/20758251-2015-7-3-38-47

Petrova ES (2018) Differentiation potential of mesenchymal stem cells and stimulation of nerve regeneration. Russian Journal of Developmental Biology 49 (4): 193–205. s://doi.org/ 10.1134/S1062360418040033

Huang CW, Huang WC, Qiu X, Fernandes Ferreira da Silva F, Wang A, Patel S, Nesti LJ, Poo MM, Li S (2017) The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep 7(1):17401. s://doi.org/ 10.1038/s41598-017-17043-4

Du J, Zhen G, Chen H, Zhang S, Qing L, Yang X, Lee G, Mao HQ, Jia X (2018) Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials 181: 347–359. https://doi.org/ 10.1016/j.biomaterials.2018.07.015

Xia B, Chen G, Zou Y, Yang L, Pan J, Lv Y (2019) Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery . J Tissue Eng Regen Med 13(4): 625–636. s://doi.org/ 10.1002/term.2823

Petrova E, Isaeva E, Kolos E, Korzhevskii D (2018) Allogeneic bone marrow mesenchymal stem cells in the epineurium and perineurium of the recipient rat. Biological Communications 63 (2): 123–132. s://doi.org/ 10.21638/spbu03.2018.205

Petrova ES, Kolos EA, Korzhevskii DE (2021) Changes in the thickness of rat nerve sheaths after single subperineural administration of rat bone marrow mesenchymal stem cells. Bull Exp Biol Med 4. s://doi.org/ 10.1007/s10517-021-05267-4.

Kucenas S, Wang WD, Knapik EW, Appel B (2009) A selective glial barrier at motor axon exit points prevents oligodendrocyte migration from the spinal cord. J Neurosci 29: 15187–15194. s://doi.org/ 10.1523/JNEUROSCI.4193-09.2009

Lunn ER, Scourfield J, Keynes RJ, Stern CD (1987). The neural tube origin of ventral root sheath cells in the chick embryo. Development 101: P. 247–254

Boyd BS, Gray AT, Dilley A, Wanek L, Topp KS (2012) The pattern of tibial nerve excursion with active ankle dorsiflexion is different in older people with diabetes mellitus. Clin Biomech (Bristol, Avon) 27 (9): 967–971. s://doi.org/ 10.1016/j.clinbiomech.2012.06.013

Ross MH, Reith EJ (1989) Perineurium: Evidence for contractile elements. Science 165: 604–606. s://doi.org/ 10.1126/science.165.3893.604

De Jonge RR, Vreijling JP, Meintjes A, Kwa MS, van Kampen AH, van Schaik IN, Baas F (2003) Transcriptional profile of the human peripheral nervous system by serial analysis of gene expression. Genomics 82(2): 97–108. s://doi.org/ 10.1016/s0888-7543(03)00124-1

De Jonge RR, van Schaik IN, Vreijling JP, Troost D, Baas F (2004) Expression of complement components in the peripheral nervous system. Hum Mol Genet 13(3): 295–302. https://doi.org/ 10.1093/hmg/ddh029

Погорелов ЮВ Гистогематические барьеры (2001) В кн.: Руководство по гистологии. Т. I. СПб: СпецЛит. С. 465–494 [Pogorelov YV Gistogematicheskie bar'ery (2001) V kn.: Rukovodstvo po gistologii. T. I. SPb: SpecLit. S. 465–494 (In Russ)].

Burkel WE (1967) The histological fine structure of perineurium. Anat Rec 158(2):177–189. https://doi.org/ 10.1002/ar.1091580207

Hall SM, Williams PL (1971) The distribution of electron-dense tracers in peripheral nerve fibres.J Cell Sci. 8(2):541–555.

Klemm H (1970) The perineurium: a diffusion barrier for peroxidase in epineurial and endoneurial application. Z Zellforsch Mikrosk Anat108(3): 431–445.

Olsson Y, Reese TS (1971) Permeability of vasa nervorum and perineurium in mouse sciatic nerve studied by fluorescence and electron microscopy. J Neuropathol Exp Neurol 30(1):105–119. s://doi.org/ 10.1097/00005072-197101000-00011

Palladino SP, Helton ES, Jain P, Dong C, Crowley MR, Crossman DK, Ubogu EE (2017) The Human Blood-Nerve Barrier Transcriptome. Sci Rep. 7(1): 17477. s://doi.org/ 10.1038/s41598-017-17475-y

Ouyang X, Dong C, Ubogu EE (2019) In situ molecular characterization of endoneurial microvessels that form the blood-nerve barrier in normal human adult peripheral nerves. J Peripher Nerv Syst 24(2):195–206. s://doi.org/ 10.1111/jns.12326

Dong C, Ubogu EE (2018) GDNF enhances human blood-nerve barrier function in vitro via MAPK signaling pathways. Tissue Barriers 6(4):1–22. s://doi.org/ 10.1080/21688370.2018.1546537

Moreau N, Mauborgne A, Couraud PO, Romero IA, Weksler BB, Villanueva L. Pohl M, Boucher Y (2017) Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury? Mol Pain 13:1744806917727625. s://doi.org/ 10.1177/1744806917727625.

Moreau N, Mauborgne A, Bourgoin S, Couraud PO, Romero IA, Weksler BB, Villanueva L, Pohl M, Boucher Y (2016) Early alterations of Hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development. Pain 157(4): 827–839. s://doi.org/ 10.1097/j.pain.0000000000000444

Быков ВЛ (2007) Цитология и общая гистология. Санкт-Петербург: Сотис. [Bykov VL (2007) Citologija i obshhaja gistologija. Sankt-Peterburg: Sotis (In Russ)].

Oldfors A, Johansson BR (1979) Barriers and transport properties of the perineurium. An ultrastructural study with 125I-labeled albuminin and horseradish peroxidase in normal and protein-deprived rats. Acta Neuropathol 47(2):139–143. s://doi.org/ 10.1007/BF00717037

Oldfors A (1981)Permeability of the perineurium of small nerve fascicles: an ultrastructural study using ferritin in rats. Neuropathol Appl Neurobiol 7(3):183–194. s://doi.org/ 10.1111/j.1365-2990.1981.tb00088.x

Parmantier E, Lynn B, Lawson D, Turmaine M, Namini SS, Chakrabarti L, McMahon AP, Jessen KR, Mirsky R (1999) Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23(4): 713–724. s://doi.org/ 10.1016/s0896-6273(01)80030-1.

Jung J, Frump D, Su J, Wang W, Mozaffar T, Gupta R (2015) Desert hedgehog is a mediator of demyelination in compression neuropathies. Exp Neurol 271: 84–94. s://doi.org/ 10.1016/j.expneurol.2015.04.014

Fontenas L, Kucenas S (2017) Livin’ on the edge: glia shape nervous system transition zones. Curr Opin Neurobiol 47:44–51. s ://doi.org/10.1016/j.conb.2017.09.008

Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu. ReNeurosci 30: 209–233. s://doi.org/ 10.1146/annurev.neuro.30.051606.094337

Monk KR, Feltri ML, Taveggia C (2015) New insights on Schwann cell development. Glia 63: 1376–1393 s://doi.org/ 10.1002/glia.22852

Ohara S, Takahashi H, Ikuta F (1986) Ultrastructural alterations of perineurial cells in the early stage of Wallerian degeneration. Lab Invest 54(2): 213–221.

Spencer PS, Weinberg HJ, Raine CS, Prineas J W (1975) The perineurial window—a new model of focal demyelination and remyelination. Brain Res 96: 323–329. s://doi.org/ 10.1016/0006-8993(75)90742-8

Radek A, Thomas PK, King RH (1986) Perineurial differentiation in interchange grafts of rat peripheral nerve and spinal root. J Anat 147: 207–217.

Lewis GM, Kucenas S (2014) Perineurial glia are essential for motor axon regrowth following nerve injury. J Neurosci 34(38):12762–12777. s://doi.org/ 10.1523/JNEUROSCI.1906-14.2014

Ohta M, Okajima S, Hirakawa H, Tokunaga D, Fujiwara H, Oda R, Kobashi H, Hirata M, Kubo T (2005) Expression of tight and gap junctional proteins in the perineurial window model of the rat sciatic nerve. Int J Neurosci 115(10):1469–1481. s://doi.org/ 10.1080/00207450591001871

Toyoda T, Ochiai K, Ohashi K, Tomioka Y, Kimura T, Umemura T (2005) Multiple perineuriomas in chicken (Gallus gallus domesticus). Vet Pathol 42(2):176–183. s://doi.org/ 10.1354/vp.42-2-176

Pummi KP, Aho HJ, Laato MK, Peltonen JT, Peltonen SA (2006) Tight junction proteins and perineurial cells in neurofibromas. J Histochem Cytochem 54(1): 53–61. s://doi.org/ 10.1369/jhc.5A6671.2005

Shelekhova KV, Danilova AB, Michal M, Kazakov DV (2008) Hybrid neurofibroma-perineurioma: an additional example of an extradigital tumor. .Ann Diagn Pathol 12(3): 233–234. https://doi.org/ 10.1016/j.anndiagpath.2008.02.012

Gibson JD (1979) The origin of the neural macrophage: a quantitative ultrastructural study of cell population changes during Wallerian degeneration. J Anat 129(1):1–19.

Hirata K, Kawabuchi M (2002) Myelin phagocytosis by macrophages and nonmacrophages during Walleriandegeneration. Microsc Res Tech 57: 541–547. s://doi.org/ 10.1002/jemt.10108

De la Motte DJ, Hall SM, Allt G (1975) A study of the perineurium in peripheral nerve pathology. Acta Neuropathol 33(3): 257–270. s://doi.org/ 10.1007/BF00688398