РЕГУЛЯЦИЯ КОНЦЕНТРАЦИЙ ИОНОВ КАЛИЯ И ХЛОРИД-ИОНОВ В НЕРВНОЙ ТКАНИ КАК МЕТОД ПРОТИВОСУДОРОЖНОЙ ТЕРАПИИ
PDF

Ключевые слова

эпилепсия
оптогенетика
генная терапия
КСС2-котранспортер
Kir4.1-канал

Аннотация

При некоторых патологических состояниях, например, фармакорезистентной эпилепсии, эпилептическом статусе или определённых формах генетических аномалий спайковая активность ГАМКергических интернейронов может усиливать процессы возбуждения в нервной ткани и провоцировать генерацию иктального разряда. В результате противосудорожные средства, действующие на ГАМКергическую систему, могут оказаться неэффективными или даже усиливать судорожную активность. Этот парадоксальный эффект работы тормозной системы обусловлен нарушением ионного баланса в нервной ткани. В данном обзоре рассмотрены механизмы инициации иктального разряда в нейронных сетях из-за нарушения баланса хлорид-ионов и ионов калия, а также возможные методы воздействия на регуляцию ионных концентраций. Для подавления эпилептической активности, вызванной дисбалансом ионов, эффективным может оказаться как усиление (или ослабление) активности определенных транспортеров ионов и ионных насосов в нейронах, так и их дополнительная экспрессия с помощью генной терапии. В поддержании необходимых концентраций ионов калия и хлора в нервной ткани важное значение имеют NaK-помпа, NKCC1- и KCC2-котранспортеры, которые ранее неоднократно рассматривались в качестве фармакологических мишеней для противоэпилептического воздействия. Препятствием для работы в этом направлении является отсутствие достаточно селективных фармакологических инструментов для воздействия на них, а также методов доставки препаратов к эпилептическому очагу. Более перспективным направлением представляется использование методов генной терапии, таких как гиперэкспрессия транспортера KCC2 в эпилептическом очаге. Другим возможным направлением может стать применение оптогенетических инструментов: специально сконструированных светочувствительных ионных помп или каналов. В этом случае энергия фотонов может быть использована для создания требуемых градиентов хлорид-ионов и ионов калия, однако и у этих методов пока есть существенные ограничения, которые затрудняют их быстрое введение в практику.

https://doi.org/10.31857/S0044452922050096
PDF

Литература

Fattorusso A, Matricardi S, Mencaroni E, Dell’Isola GB, Di Cara G, Striano P, Verrotti A (2021) The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Front Neurol 12:1030. https://doi.org/10.3389/FNEUR.2021.674483

Löscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 12:757–776. https://doi.org/10.1038/nrd4126

Raimondo JV, Burman RJ, Katz AA, Akerman CJ (2015) Ion dynamics during seizures. Front Cell Neurosci 9:1–14. https://doi.org/10.3389/fncel.2015.00419

Magloire V, Mercier MS, Kullmann DM, Pavlov I (2019) GABAergic Interneurons in Seizures: Investigating Causality With Optogenetics. Neuroscientist 25:344–358. https://doi.org/10.1177/1073858418805002

Khazipov R (2016) GABAergic Synchronization in Epilepsy. Cold Spring Harb Perspect Med 6:a022764. https://doi.org/10.1101/CSHPERSPECT.A022764

de Curtis M, Uva L, Gnatkovsky V, Librizzi L (2018) Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res 143:50–59. https://doi.org/10.1016/J.EPLEPSYRES.2018.04.005

Chizhov AV, Amakhin DV, Zaitsev AV (2017) Computational model of interictal discharges triggered by interneurons. PLoS One 12:e0185752. https://doi.org/10.1371/journal.pone.0185752

Chizhov AV, Zefirov AV, Amakhin DV, Smirnova EY, Zaitsev AV (2018) Minimal model of interictal and ictal discharges “Epileptor-2.” PLOS Comput Biol 14:e1006186. https://doi.org/10.1371/journal.pcbi.1006186

Ammann D, Chao P, Simon W (1987) Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett 74:221–226. https://doi.org/10.1016/0304-3940(87)90153-4

Codadu NK, Parrish RR, Trevelyan AJ (2019) Region‐specific differences and areal interactions underlying transitions in epileptiform activity. J Physiol 597:2079–2096. https://doi.org/10.1113/JP277267

Chizhov AV, Amakhin DV, Smirnova EY, Zaitsev AV (2022) Ictal wavefront propagation in slices and simulations with conductance-based refractory density model. PLOS Comput Biol 18:e1009782. https://doi.org/10.1371/journal.pcbi.1009782

Moody WJ, Futamachi KJ, Prince DA (1974) Extracellular potassium activity during epileptogenesis. Exp Neurol 42:248–263. https://doi.org/10.1016/0014-4886(74)90023-5

Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50:489–495. https://doi.org/10.1016/0006-8993(73)90758-0

Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27–27:237–243. https://doi.org/10.1007/BF00235500

Williams JR, Sharp JW, Kumari VG, Wilson M, Payne JA (1999) The Neuron-specific K-Cl Cotransporter, KCC2. J Biol Chem 274:12656–12664. https://doi.org/10.1074/jbc.274.18.12656

Kuner T, Augustine GJ (2000) A Genetically Encoded Ratiometric Indicator for Chloride. Neuron 27:447–459. https://doi.org/10.1016/S0896-6273(00)00056-8

Glykys J, Dzhala V, Egawa K, Balena T, Saponjian Y, Kuchibhotla KV, Bacskai BJ, Kahle KT, Zeuthen T, Staley KJ (2014) Local impermeant anions establish the neuronal chloride concentration. Science 343:670–675. https://doi.org/10.1126/science.1245423

Arosio D, Ricci F, Marchetti L, Gualdani R, Albertazzi L, Beltram F (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 7:516–518. https://doi.org/10.1038/nmeth.1471

Raimondo J (2013) A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system. Front Cell Neurosci 7:202. https://doi.org/10.3389/fncel.2013.00202

Sulis Sato S, Artoni P, Landi S, Cozzolino O, Parra R, Pracucci E, Trovato F, Szczurkowska J, Luin S, Arosio D, Beltram F, Cancedda L, Kaila K, Ratto GM (2017) Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc Natl Acad Sci U S A114:E8770–E8779. https://doi.org/10.1073/pnas.1702861114

Ponomareva D, Petukhova E, Bregestovski P (2021) Simultaneous Monitoring of pH and Chloride (Cl−) in Brain Slices of Transgenic Mice. Int J Mol Sci 22:13601. https://doi.org/10.3390/ijms222413601

Burman RJ, Selfe JS, Lee JH, van den Berg M, Calin A, Codadu NK, Wright R, Newey SE, Parrish RR, Katz AA, Wilmshurst JM, Akerman CJ, Trevelyan AJ, Raimondo J V. (2019) Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain 142:3482–3501. https://doi.org/10.1093/brain/awz283

Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI (2018) Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 12:101. https://doi.org/10.3389/fncel.2018.00101

Kahle KT, Deeb TZ, Puskarjov M, Silayeva L, Liang B, Kaila K, Moss SJ (2013) Modulation of neuronal activity by phosphorylation of the K–Cl cotransporter KCC2. Trends Neurosci 36:726–737. https://doi.org/10.1016/j.tins.2013.08.006

Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M (2014) GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 26:34–41. https://doi.org/10.1016/j.conb.2013.11.004

Wasterlain CG, Liu H, Naylor DE, Thompson KW, Suchomelova L, Niquet J, Mazarati AM, Baldwin RA (2009) Molecular basis of self-sustaining seizures and pharmacoresistance during status epilepticus: The receptor trafficking hypothesis revisited. Epilepsia 50:16–18. https://doi.org/10.1111/j.1528-1167.2009.02375.x

Puskarjov M, Ahmad F, Kaila K, Blaesse P (2012) Activity-Dependent Cleavage of the K-Cl Cotransporter KCC2 Mediated by Calcium-Activated Protease Calpain. J Neurosci 32:11356–11364. https://doi.org/10.1523/JNEUROSCI.6265-11.2012

Lee HHC, Jurd R, Moss SJ (2010) Tyrosine phosphorylation regulates the membrane trafficking of the potassium chloride co-transporter KCC2. Mol Cell Neurosci 45:173–179. https://doi.org/10.1016/j.mcn.2010.06.008

Lee HHC, Deeb TZ, Walker JA, Davies PA, Moss SJ (2011) NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor–mediated currents. Nat Neurosci 14:736–743. https://doi.org/10.1038/nn.2806

Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion. J Cell Biol 159:747–752. https://doi.org/10.1083/jcb.200209011

Kahle KT, Khanna AR, Duan J, Staley KJ, Delpire E, Poduri A (2016) The KCC2 Cotransporter and Human Epilepsy. Neuroscience 22:555–562. https://doi.org/10.1177/1073858416645087

Stödberg T, McTague A, Ruiz AJ, Hirata H, Zhen J, Long P, Farabella I, Meyer E, Kawahara A, Vassallo G, Stivaros SM, Bjursell MK, Stranneheim H, Tigerschiöld S, Persson B, Bangash I, Das K, Hughes D, Lesko N, Lundeberg J, Scott RC, Poduri A, Scheffer IE, Smith H, Gissen P, Schorge S, Reith MEA, Topf M, Kullmann DM, Harvey RJ, Wedell A, Kurian MA (2015) Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nat Commun 6:8038. https://doi.org/10.1038/ncomms9038

Dimitrijevic S, Jekic B, Cvjeticanin S, Tucovic A, Filipovic T, Novaković I, Ivić B, Nikolic D (2022) KCC2 rs2297201 Gene Polymorphism Might be a Predictive Genetic Marker of Febrile Seizures. ASN Neuro 14:175909142210932. https://doi.org/10.1177/17590914221093257

Duy PQ, David WB, Kahle KT (2019) Identification of KCC2 Mutations in Human Epilepsy Suggests Strategies for Therapeutic Transporter Modulation. Front Cell Neurosci 13:515. https://doi.org/10.3389/FNCEL.2019.00515/BIBTEX

Filatov G, Krishnan GP, Rulkov NF, Bazhenov M (2011) Dynamics of epileptiform activity in mouse hippocampal slices. J Biol Phys 37:347–360. https://doi.org/10.1007/S10867-011-9216-X/FIGURES/5

Librizzi L, Losi G, Marcon I, Sessolo M, Scalmani P, Carmignoto G, de Curtis M (2017) Interneuronal Network Activity at the Onset of Seizure-Like Events in Entorhinal Cortex Slices. J Neurosci 37:10398–10407. https://doi.org/10.1523/JNEUROSCI.3906-16.2017

González OC, Krishnan GP, Timofeev I, Bazhenov M (2019) Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiol Dis 130:104485. https://doi.org/10.1016/J.NBD.2019.104485

Bellot-Saez A, Stevenson R, Kékesi O, Samokhina E, Ben-Abu Y, Morley JW, Buskila Y (2021) Neuromodulation of Astrocytic K+ Clearance. Int J Mol Sci 22:2520. https://doi.org/10.3390/ijms22052520

Ferraro TN, Golden GT, Smith GG, Martin JF, Lohoff FW, Gieringer TA, Zamboni D, Schwebel CL, Press DM, Kratzer SO, Zhao H, Berrettini WH, Buono RJ (2004) Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: nomination of Kcnj10 as a causative gene. Mamm Genome 2004 154 15:239–251. https://doi.org/10.1007/S00335-003-2270-3

Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601. https://doi.org/10.1111/J.1471-4159.2008.05615.X

Köhling R, Wolfart J (2016) Potassium Channels in Epilepsy. Cold Spring Harb Perspect Med 6:a022871. https://doi.org/10.1101/cshperspect.a022871

Gallanti A, Tonelli A, Cardin V, Bussone G, Bresolin N, Bassi MT (2008) A novel de novo nonsense mutation in ATP1A2 associated with sporadic hemiplegic migraine and epileptic seizures. J Neurol Sci 273:123–126. https://doi.org/10.1016/J.JNS.2008.06.006

Hempelmann A, Heils A, Sander T (2006) Confirmatory evidence for an association of the connexin-36 gene with juvenile myoclonic epilepsy. Epilepsy Res 71:223–8. https://doi.org/10.1016/j.eplepsyres.2006.06.021

D’Antuono M, Louvel J, Köhling R, Mattia D, Bernasconi A, Olivier A, Turak B, Devaux A, Pumain R, Avoli M (2004) GABAA receptor‐dependent synchronization leads to ictogenesis in the human dysplastic cortex. Brain 127:1626–1640. https://doi.org/10.1093/BRAIN/AWH181

Mattia D, Olivier A, Avoli M (1995) Seizure‐like discharges recorded in human dysplastic neocortex maintained in vitro. Neurology 45:1391–1395. https://doi.org/10.1212/WNL.45.7.1391

Avoli M, De Curtis M, Gnatkovsky V, Gotman J, Köhling R, Lévesque M, Manseau F, Shiri Z, Williams S (2016) Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. J Neurophysiol 115:3229–3237. https://doi.org/10.1152/JN.01128.2015/ASSET/IMAGES/LARGE/Z9K0071636960005.JPEG

Chang M, Dian JA, Dufour S, Wang L, Moradi Chameh H, Ramani M, Zhang L, Carlen PL, Womelsdorf T, Valiante TA (2018) Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Neurobiol Dis 109:102–116. https://doi.org/10.1016/J.NBD.2017.10.007

Elahian B, Lado NE, Mankin E, Vangala S, Misra A, Moxon K, Fried I, Sharan A, Yeasin M, Staba R, Bragin A, Avoli M, Sperling MR, Engel J, Weiss SA (2018) Low-voltage fast seizures in humans begin with increased interneuron firing. Ann Neurol 84:588–600. https://doi.org/10.1002/ANA.25325

Miri ML, Vinck M, Pant R, Cardin JA (2018) Altered hippocampal interneuron activity precedes ictal onset. Elife 7:e40750. https://doi.org/10.7554/eLife.40750

Sessolo M, Marcon I, Bovetti S, Losi G, Cammarota M, Ratto GM, Fellin T, Carmignoto G (2015) Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity. J Neurosci 35:9544–9557. https://doi.org/10.1523/JNEUROSCI.5117-14.2015

Yekhlef L, Breschi GL, Lagostena L, Russo G, Taverna S (2015) Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. J Neurophysiol 113:1616–1630. https://doi.org/10.1152/jn.00841.2014

Smirnova EY, Sinyak DS, Chizhov AV, Zaitsev AV (2021) Age-Dependent Generation of Epileptiform Activity in the 4-Aminopyridine Model with Slices of the Rat Entorhinal Cortex. J Evol Biochem Physiol 57:230–240. https://doi.org/10.1134/S0022093021020058

Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus visual cortex of the cat. Brain Res 332:143–149. https://doi.org/10.1016/0006-8993(85)90397-X

Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Rotaru D, Fish KN, Krimer LS, Lewis DA (2009) Interneuron Diversity in Layers 2–3 of Monkey Prefrontal Cortex. Cereb Cortex 19:1597–1615. https://doi.org/10.1093/cercor/bhn198

Schneider-Mizell CM, Bodor AL, Collman F, Brittain D, Bleckert A, Dorkenwald S, Turner NL, Macrina T, Lee K, Lu R, Wu J, Zhuang J, Nandi A, Hu B, Buchanan J, Takeno MM, Torres R, Mahalingam G, Bumbarger DJ, Li Y, Chartrand T, Kemnitz N, Silversmith WM, Ih D, Zung J, Zlateski A, Tartavull I, Popovych S, Wong W, Castro M, Jordan CS, Froudarakis E, Becker L, Suckow S, Reimer J, Tolias AS, Anastassiou CA, Seung HS, Reid RC, Costa NM da (2021) Structure and function of axo-axonic inhibition. Elife 10:e73783. https://doi.org/10.7554/eLife.73783

Ruiz A, Fabian-Fine R, Scott R, Walker MC, Rusakov DA, Kullmann DM (2003) GABAA Receptors at Hippocampal Mossy Fibers. Neuron 39:961–973. https://doi.org/10.1016/S0896-6273(03)00559-2

Báldi R, Varga C, Tamás G (2010) Differential distribution of KCC2 along the axo-somato-dendritic axis of hippocampal principal cells. Eur J Neurosci 32:1319–1325. https://doi.org/10.1111/j.1460-9568.2010.07361.x

Szabadics J, Varga C, Molnár G, Oláh S, Barzó P, Tamás G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–5. https://doi.org/10.1126/science.1121325

Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K (2008) GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na-K-2Cl Cotransporter NKCC1. J Neurosci 28:4635–4639. https://doi.org/10.1523/JNEUROSCI.0908-08.2008

Dudok B, Klein PM, Soltesz I (2022) Toward Understanding the Diverse Roles of Perisomatic Interneurons in Epilepsy. Epilepsy Curr 22:54–60. https://doi.org/10.1177/15357597211053687

Jiang X, Lachance M, Rossignol E (2016) Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Prog Brain Res 226:81–126. https://doi.org/10.1016/bs.pbr.2016.04.012

Moore YE, Kelley MR, Brandon NJ, Deeb TZ, Moss SJ (2017) Seizing Control of KCC2: A New Therapeutic Target for Epilepsy. Trends Neurosci 40:555–571. https://doi.org/10.1016/j.tins.2017.06.008

Liu R, Wang J, Liang S, Zhang G, Yang X (2019) Role of NKCC1 and KCC2 in Epilepsy: From Expression to Function. Front Neurol 10:1407. https://doi.org/10.3389/fneur.2019.01407

Buchin A, Chizhov A, Huberfeld G, Miles R, Gutkin BS (2016) Reduced efficacy of the KCC2 cotransporter promotes epileptic oscillations in a subiculum network model. J Neurosci 36:11619–11633. https://doi.org/10.1523/JNEUROSCI.4228-15.2016

Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206. https://doi.org/10.1016/S0166-2236(03)00068-7

Uwera J, Nedergaard S, Andreasen M (2015) A novel mechanism for the anticonvulsant effect of furosemide in rat hippocampus in vitro. Brain Res 1625:1–8. https://doi.org/10.1016/j.brainres.2015.08.014

Löscher W, Puskarjov M, Kaila K (2013) Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69:62–74. https://doi.org/10.1016/j.neuropharm.2012.05.045

Delpire E, Baranczak A, Waterson AG, Kim K, Kett N, Morrison RD, Daniels JS, Weaver CD, Lindsley CW (2012) Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: Development of a highly selective and more potent in vitro probe. Bioorg Med Chem Lett 22:4532–4535. https://doi.org/10.1016/j.bmcl.2012.05.126

Deisz RA, Wierschke S, Schneider UC, Dehnicke C (2014) Effects of VU0240551, a novel KCC2 antagonist, and DIDS on chloride homeostasis of neocortical neurons from rats and humans. Neuroscience 277:831–841. https://doi.org/10.1016/j.neuroscience.2014.07.037

Hamidi S, Avoli M (2015) KCC2 function modulates in vitro ictogenesis. Neurobiol Dis 79:51–58. https://doi.org/10.1016/j.nbd.2015.04.006

Lee HHC, Walker JA, Williams JR, Goodier RJ, Payne JA, Moss SJ (2007) Direct Protein Kinase C-dependent Phosphorylation Regulates the Cell Surface Stability and Activity of the Potassium Chloride Cotransporter KCC2. J Biol Chem 282:29777–29784. https://doi.org/10.1074/jbc.M705053200

Banke TG, Gegelashvili G (2008) Tonic activation of group I mGluRs modulates inhibitory synaptic strength by regulating KCC2 activity. J Physiol 586:4925–4934. https://doi.org/10.1113/JPHYSIOL.2008.157024

Ure J, Baudry M, Perassolo M (2006) Metabotropic glutamate receptors and epilepsy. J Neurol Sci 247:1–9. https://doi.org/10.1016/j.jns.2006.03.018

Kueh D, Barnett WH, Cymbalyuk GS, Calabrese RL (2016) Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches. Elife 5:e19322. https://doi.org/10.7554/eLife.19322

Picton LD, Nascimento F, Broadhead MJ, Sillar KT, Miles GB (2017) Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks. J Neurosci 37:906–921. https://doi.org/10.1523/JNEUROSCI.2005-16.2016

Donaldson J, Minnich JL, Barbeau A (1972) Ouabain-induced Seizures in Rats: Regional and Subcellular Localization of 3 H-Ouabain Associated with Na+–K + -ATPase in Brain. Can J Biochem 50:888–896. https://doi.org/10.1139/o72-124

Kinboshi M, Ikeda A, Ohno Y (2020) Role of Astrocytic Inwardly Rectifying Potassium (Kir) 4.1 Channels in Epileptogenesis. Front Neurol 11:1832. https://doi.org/10.3389/fneur.2020.626658

Larsen BR, MacAulay N (2014) Kir4.1-mediated spatial buffering of K+ : Experimental challenges in determination of its temporal and quantitative contribution to K + clearance in the brain. Channels 8:544–550. https://doi.org/10.4161/19336950.2014.970448

Moroni RF, Inverardi F, Regondi MC, Pennacchio P, Frassoni C (2015) Developmental expression of Kir4.1 in astrocytes and oligodendrocytes of rat somatosensory cortex and hippocampus. Int J Dev Neurosci 47:198–205. https://doi.org/10.1016/j.ijdevneu.2015.09.004

Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y (2004) Differential Assembly of Inwardly Rectifying K+ Channel Subunits, Kir4.1 and Kir5.1, in Brain Astrocytes. J Biol Chem 279:44065–44073. https://doi.org/10.1074/jbc.M405985200

Steinhäuser C, Seifert G, Bedner P (2012) Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60:1192–1202. https://doi.org/10.1002/glia.22313

Heuser K, Eid T, Lauritzen F, Thoren AE, Vindedal GF, Taubøll E, Gjerstad L, Spencer DD, Ottersen OP, Nagelhus EA, Lanerolle NC de (2012) Loss of Perivascular Kir4.1 Potassium Channels in the Sclerotic Hippocampus of Patients With Mesial Temporal Lobe Epilepsy. J Neuropathol Exp Neurol 71:814–825. https://doi.org/10.1097/NEN.0b013e318267b5af

Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T, Hulton S-A, Witzgall R, Ben-Zeev B, Howie AJ, Kleta R, Bockenhauer D, Warth R (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci U S A 107:14490–14495. https://doi.org/10.1073/pnas.1003072107

Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN, Eaton MJ, Nichols CG (2010) Molecular Mechanisms of EAST/SeSAME Syndrome Mutations in Kir4.1 (KCNJ10). J Biol Chem 285:36040–36048. https://doi.org/10.1074/jbc.M110.163170

Nagao Y, Harada Y, Mukai T, Shimizu S, Okuda A, Fujimoto M, Ono A, Sakagami Y, Ohno Y (2013) Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine–induced temporal lobe epilepsy model. Front Cell Neurosci 7:104. https://doi.org/10.3389/fncel.2013.00104

Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir4.1 Channel in Excess Potassium Clearance: An In Vivo Study on Anesthetized Glial-Conditional Kir4.1 Knock-Out Mice. J Neurosci 30:15769–15777. https://doi.org/10.1523/JNEUROSCI.2078-10.2010

Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN, Eaton MJ (2007) Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55:274–281. https://doi.org/10.1002/glia.20455

Kharade SV, Kurata H, Bender AM, Blobaum AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, Satlin LM, Meiler J, Weaver CD, Lindsley CW, Hopkins CR, Denton JS (2018) Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992. Mol Pharmacol 94:926–937. https://doi.org/10.1124/mol.118.112359

Aréchiga-Figueroa IA, Marmolejo-Murillo LG, Cui M, Delgado-Ramírez M, van der Heyden MAG, Sánchez-Chapula JA, Rodríguez-Menchaca AA (2017) High-potency block of Kir4.1 channels by pentamidine: Molecular basis. Eur J Pharmacol 815:56–63. https://doi.org/10.1016/J.EJPHAR.2017.10.009

Ohno Y, Kunisawa N, Shimizu S (2021) Emerging Roles of Astrocyte Kir4.1 Channels in the Pathogenesis and Treatment of Brain Diseases. Int J Mol Sci 22:10236. https://doi.org/10.3390/ijms221910236

Ohno Y, Hibino H, Lossin C, Inanobe A, Kurachi Y (2007) Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors. Brain Res 1178:44–51. https://doi.org/10.1016/j.brainres.2007.08.018

Leo M, Schmitt L-I, Kutritz A, Kleinschnitz C, Hagenacker T (2021) Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp Neurol 341:113695. https://doi.org/10.1016/j.expneurol.2021.113695

Leo M, Schmitt L-I, Steffen R, Kutritz A, Kleinschnitz C, Hagenacker T (2021) Modulation of Glutamate Transporter EAAT1 and Inward-Rectifier Potassium Channel Kir4.1 Expression in Cultured Spinal Cord Astrocytes by Platinum-Based Chemotherapeutics. Int J Mol Sci 22:6300. https://doi.org/10.3390/ijms22126300

Mukai T, Kinboshi M, Nagao Y, Shimizu S, Ono A, Sakagami Y, Okuda A, Fujimoto M, Ito H, Ikeda A, Ohno Y (2018) Antiepileptic Drugs Elevate Astrocytic Kir4.1 Expression in the Rat Limbic Region. Front Pharmacol 9:845. https://doi.org/10.3389/fphar.2018.00845

Wang D, Gao G (2014) State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov Med 18:151–161.

Ingusci S, Cattaneo S, Verlengia G, Zucchini S, Simonato M (2019) A Matter of Genes: The Hurdles of Gene Therapy for Epilepsy. Epilepsy Curr 19:38–43. https://doi.org/10.1177/1535759718822846

Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18:358–378. https://doi.org/10.1038/s41573-019-0012-9

McCown TJ (2006) Adeno-associated Virus-Mediated Expression and Constitutive Secretion of Galanin Suppresses Limbic Seizure Activity in Vivo. Mol Ther 14:63–68. https://doi.org/10.1016/J.YMTHE.2006.04.004

Noè F, Pool AH, Nissinen J, Gobbi M, Bland R, Rizzi M, Balducci C, Ferraguti F, Sperk G, During MJ, Pitkänen A, Vezzani A (2008) Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 131:1506–1515. https://doi.org/10.1093/BRAIN/AWN079

Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B (2021) NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front Mol Neurosci 13:608001. https://doi.org/10.3389/fnmol.2020.608001

Bernard C (2012) Treating epilepsy with a light potassium diet. Sci Transl Med 4:161fs40. https://doi.org/10.1126/scitranslmed.3005297

Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, Hashemi KS, Walker MC, Schorge S, Kullmann DM (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4:161ra152. https://doi.org/10.1126/scitranslmed.3004190

Snowball A, Chabrol E, Wykes RC, Shekh-Ahmad T, Cornford JH, Lieb A, Hughes MP, Massaro G, Rahim AA, Hashemi KS, Kullmann DM, Walker MC, Schorge S (2019) Epilepsy Gene Therapy Using an Engineered Potassium Channel. J Neurosci 39:3159–3169. https://doi.org/10.1523/JNEUROSCI.1143-18.2019

Walker MC, Kullmann DM (2020) Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 168:107751. https://doi.org/10.1016/j.neuropharm.2019.107751

Magloire V, Cornford J, Lieb A, Kullmann DM, Pavlov I (2019) KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat Commun 10:1225. https://doi.org/10.1038/s41467-019-08933-4

Cheung DL, Cooke MJ, Goulton CS, Chaichim C, Cheung LF, Khoshaba A, Nabekura J, Moorhouse AJ (2022) Global transgenic upregulation of KCC2 confers enhanced diazepam efficacy in treating sustained seizures. Epilepsia 63:e15–e22. https://doi.org/10.1111/epi.17097

Han X, Boyden ES (2007) Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution. PLoS One 2:e299. https://doi.org/10.1371/journal.pone.0000299

Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424. https://doi.org/10.1126/science.1252367

Berndt A, Lee SY, Wietek J, Ramakrishnan C, Steinberg EE, Rashid AJ, Kim H, Park S, Santoro A, Frankland PW, Iyer SM, Pak S, Ährlund-Richter S, Delp SL, Malenka RC, Josselyn SA, Carlén M, Hegemann P, Deisseroth K (2016) Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci U S A 113:822–829. https://doi.org/10.1073/pnas.1523341113

Alfonsa H, Lakey JH, Lightowlers RN, Trevelyan AJ (2016) Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons. Nat Commun 7:13495. https://doi.org/10.1038/ncomms13495

Malyshev AY, Roshchin MV, Smirnova GR, Dolgikh DA, Balaban PM, Ostrovsky MA (2017) Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light. Neurosci Lett 640:76–80. https://doi.org/10.1016/j.neulet.2017.01.026

Messier JE, Chen H, Cai Z-L, Xue M (2018) Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon. Elife 7:e38506. https://doi.org/10.7554/eLife.38506

Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew M V, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17:694–703. https://doi.org/10.1038/nn.3691

Sicca F, Ambrosini E, Marchese M, Sforna L, Servettini I, Valvo G, Brignone MS, Lanciotti A, Moro F, Grottesi A, Catacuzzeno L, Baldini S, Hasan S, D’Adamo MC, Franciolini F, Molinari P, Santorelli FM, Pessia M (2016) Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci Rep 6:34325. https://doi.org/10.1038/srep34325

Niday Z, Tzingounis A V. (2018) Potassium Channel Gain of Function in Epilepsy: An Unresolved Paradox. Neurosci 24:368–380. https://doi.org/10.1177/1073858418763752