ФАГОЦИТАРНАЯ АКТИВНОСТЬ АСТРОЦИТОВ МОЗГА КРЫСЫ В ПЕРВИЧНОЙ КУЛЬТУРЕ РЕГУЛИРУЕТСЯ ИНСУЛИНОМ И ГАНГЛИОЗИДОМ GM1
PDF

Ключевые слова

астроциты
фагоцитоз
инсулин
ганглиозид GM1

Аннотация

Полное и своевременное удаление апоптотических клеток и их фрагментов является жизненно важным для поддержания гомеостаза во всех тканях организма в норме и при патологических состояниях. Поскольку удаление апоптотических субстратов осуществляется клетками, обладающими фагоцитарной активностью, вопрос о регуляции последней представляет значительный интерес. В настоящей работе исследовали влияние двух биологически активных молекул – инсулина и ганглиозида GM1 на фагоцитарную активность астроцитов мозга крысы в первичной культуре. Показано, что инкубация клеток с 1 мкМ инсулином приводила к достоверному снижению фагоцитарной активности астроцитов (до 58.5% к контролю), а с 10 мкМ ганглиозидом GM1, напротив, вызывала повышение фагоцитарной активности клеток (133.4% к контролю). Предварительная инкубация астроцитов мозга с ганглиозидом GM1 полностью блокировала ингибиторный эффект инсулина. Результаты проведенного исследования могут быть использованы при выработке новых стратегий лечения нейродегенеративных заболеваний, сопровождающихся появлением субстратов апоптотического типа.

https://doi.org/10.31857/S0044452921050107
PDF

Литература

Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193. doi: 10.1038/s41580-018-0089-8.

Itoh M, Yano A, Li X, Miyamoto K, Takeuchi Y (1999) Limited uptake of foreign materials by resident macrophages in murine ovarian tissues. J Reprod Immunol 43:55–66. https://doi.org/10.1016/S0165-0378(99)00004-2

Yefimova MG, Messaddeq N, Meunier AC, Cantereau A, Jegou B, Bourmeyster N (2018) Phagocytosis by Sertoli Cells: Analysis of Main Phagocytosis Steps by Confocal and Electron Microscopy. Methods Mol Biol 1748: 85–101. https://doi.org/10.1007/978-1-4939-7698-0_8

Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–7. https://doi.org/10.1016/s0962-8924(00)88955-2

Jung YJ, Chung WS (2018) Phagocytic Roles of Glial Cells in Healthy and Diseased Brains. Biomol Ther (Seoul) 26: 350–357. https://doi.org/10.4062/biomolther.2017.133

Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, Park H, Chung WS (2021) Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590:612–617. https://doi.org/10.1038/s41586-020-03060-3.

Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008

Healy LM, Perron G, Won SY, Michell-Robinson MA, Rezk A, Ludwin SK, Moore CS, Hall JA, Bar-Or A, Antel JP (2016) MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. J Immunol 196:3375–3384. https://doi.org/10.4049/jimmunol.1502562.

Сухов ИБ, Лебедева МФ, Захарова ИО, Деркач КВ, Баюнова ЛВ, Зорина ИИ, Аврова НФ, Шпаков АО (2020) Улучшение пространственной памяти у крыс с неонатальным сахарным диабетом 2-го типа при интраназальном введении инсулина и ганглиозидов. Бюллетень эксп биол и мед 168:282–286. [Sukhov IB, Lebedeva MF, Zakharova IO, Derkach KV, Bayunova LV, Zorina II, Avrova NF, Shpakov AO (2020) Intranasal Administration of Insulin and Gangliosides Improves Spatial Memory in Rats with Neonatal Type 2 Diabetes Mellitus. Bull Exp Biol Med 168:317-320. (In Russ)]. https://doi.org/10.1007/s10517-020-04699-8

Avrova NF (1971) Brain ganglioside patterns of vertebrates. J Neurochem 18:667–674. https://doi.org/10.1111/j.1471-4159.1971.tb11996.x.

Avrova NF, Zakharova IO, Tyurin VA, Tyurina YY, Gamaley IA, Schepetkin IA (2002) Different metabolic effects of ganglioside GM1 in brain synaptosomes and phagocytic cells. Neurochem Res 7-8:751–519. https://doi.org/10.1023/a:1020296605444

Florant GL, Singer L, Scheurink AJ, Park CR, Richardson RD, Woods SC (1991) Intraventricular insulin reduces food intake and body weight of marmots during the summer feeding period. Physiol Behav 49:335–338. https://doi.org/10.1016/0031-9384(91)90053-q

Gralle M (2017) The neuronal insulin receptor in its environment. J Neurochem 140:359–367 https://doi.org/10.1111/jnc.13909.

Fernandez AM, Navarrete M, Davila JC, Garcia-Caceres C, Palenzuela R, de Martin Esteban SR, Mostany R, Tschöp M, Gutierrez A, Torres Aleman I (2019) The Insulin Receptor in Astrocytes is Involved in the Entrance of Circulating Insulin into the Brain. BioRxiv 720813. https://doi.org/10.1101/720813

Son SM, Cha MY, Choi H, Kang S, Choi H, Lee MS, Park SA, Mook-Jung I (2016) Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 12:784-–800. https://doi.org/10.1080/15548627.2016.1159375

Takano K, Koarashi K, Kawabe K, Itakura M, Nakajima H, Moriyama M, Nakamura Y (2018) Insulin expression in cultured astrocytes and the decrease by amyloid β. Neurochem Int 19:171–18. https://doi.org/10.1016/j.neuint.2017.10.017

Hamprecht B, Löffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345. https://doi.org/10.1016/0076-6879(85)09097-8

Yefimova MG, Messaddeq N, Harnois T, Meunier AC, Clarhaut J, Noblanc A, Weickert JL, Cantereau A, Philippe M, Bourmeyster N, Benzakour O (2013) A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates. Autophagy 9: 653–666. https://doi.org/10.4161/auto.23839

Folch J, Lees M, Sloan-Stanley GH (1957) A simple method for isolation and purification of total lipids from animal tissue. J Biol Chem 226:497—509. PMID:13428781

Tyurin VA, Tyurina YY, Avrova NF (1992) Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes. Neurochem Int 20: 401—407. https://doi.org/10.1016/0197-0186(92)90055-v

Feng W, Yasumura D, Matthes MT, LaVail MM, Vollrath D (2002) Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. J Biol Chem 277:17016–17022. https://doi.org/10.1074/jbc.M107876200

Avrova NF, Victorov IV, Tyurin VA, Zakharova IO, Sokolova TV, Andreeva NA, Stelmaschuk EV, Tyurina YY, Gonchar VS (1998) Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochem Res 23:945–952 https://doi.org/10.1023/a:1021076220411.

Karpova OB, Zinserling VA, Avrova NF (1992) Study of brain and vascular plexus gangliosides in meningoencephalitis of various etiology. Neurochem Int 20:365–370. https://doi.org/10.1016/0197-0186(92)90051-r.

Duchemin AM, Ren Q, Mo L, Neff NH, Hadjiconstantinou M (2002) GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. J Neurochem 81:696–707. doi: 10.1046/j.1471-4159.2002.00831.x.

Duchemin AM, Ren Q, Neff NH, Hadjiconstantinou M (2008) GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors. J Neurochem 104:1466–1477. https://doi.org/10.1111/j.1471-4159.2007.05088.x

Neufeld TP (2010) TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol 22:157–168. https://doi.org/10.1016/j.ceb.2009.11.005.

Muniz-Feliciano L, Doggett TA, Zhou Z, Ferguson TA (2017) RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye. Autophagy13:2072–2085. https://doi.org/10.1080/15548627.2017.1380124

Kim JY, Zhao H, Martinez J, Doggett TA, Kolesnikov AV, Tang PH, Ablonczy Z, Chan CC, Zhou Z, Green DR, Ferguson TA (2013) Noncanonical autophagy promotes the visual cycle. Cell 154:365–376. https://doi.org/10.1016/j.cell.2013.06.012.

Yefimova MG, Lefevre C, Bashamboo A, Eozenou C, Burel A, Lavault MT, Meunier AC, Pimentel C, Veau S, Neyroud AS, Jaillard S, Jégou B, Bourmeyster N, Ravel C (2020) Granulosa cells provide elimination of apoptotic oocytes through unconventional autophagy-assisted phagocytosis. Hum Reprod 35:1346–1362. https://doi.org/10.1093/humrep/deaa097.

Chang D, Feng J, Liu H, Liu W, Sharma L, Dela Cruz CS (2020) Differential effects of the Akt pathway on the internalization of Klebsiella by lung epithelium and macrophages. Innate Immun 26:618–626. https://doi.org/10.1177/1753425920942582

Sonnino S, Aureli M, Mauri L, Ciampa MG, Prinetti A (2015) Membrane lipid domains in the nervous system. Front Biosci (Landmark Ed) 20:280–302. doi: 10.2741/4309.

Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838:532–545. doi:10.1016/j.bbamem.2013.07.018.

Rengarajan M, Hayer A, Theriot JA (2016) Endothelial Cells Use a Formin-Dependent Phagocytosis-Like Process to Internalize the Bacterium Listeria monocytogenes. PLoS Pathog 12:e1005603. https://doi.org/10.1371/journal.ppat.1005603.

Sasaki N, Itakura Y, Toyoda M (2017) Ganglioside GM1 contributes to extracellular/intracellular regulation of insulin resistance, impairment of insulin signaling and down-stream eNOS activation, in human aortic endothelial cells after short- or long-term exposure to TNFα. Oncotarget 9:5562–5577. https://doi.org/10.18632/oncotarget.23726

Asou H, Hirano S, Uyemura K (1989) Ganglioside composition of astrocytes. Cell Struct Funct 14:561–568. https://doi.org/10.1247/csf.14.56

Masco D, Flott B, Seifert W (1989) Astrocytes in cell culture incorporate GM1 ganglioside. Glia 2:231–240. https://doi.org/10.1002/glia.440020404

Sasaki N, Itakura Y, Toyoda M (2015) Ganglioside GM1 Contributes to the State of Insulin Resistance in Senescent Human Arterial Endothelial Cells. J Biol Chem 290:25475–25486. https://doi.org/10.1074/jbc.M115.684274