ПРОФИЛАКТИЧЕСКОЕ ВВЕДЕНИЕ БЕЛКА ТЕПЛОВОГО ШОКА HSP70 ОСЛАБЛЯЕТ ЛИХОРАДОЧНУЮ РЕАКЦИЮ ПРИ ЭНДОТОКСЕМИИ У ГОЛУБЕЙ (COLUMBA LIVIA) И КРЫС
PDF

Ключевые слова

белок теплового шока 70 кДа
эндотоксемия
температура мозга
лейкоциты
голубь
крыса

Аннотация

Известно, что стресс-индуцибельный белок теплового шока 70 кДа (Heat shock protein 70, Hsp70) способен оказывать защитный эффект при эндотоксемии и сепсисе благодаря способности взаимодействовать с рецепторами иммунокомпетентных клеток и модулировать иммунный ответ. Однако остается не известным, способен ли Hsp70 ослабить лихорадочную реакцию, характерную для эндотоксемии. Нами было выполнено сравнительно-физиологическое исследование, в ходе которого у голубей и крыс с предварительно вживленными электродами и термисторами для регистрации показателей терморегуляции (температуры мозга, периферической вазомоторной реакции, сократительной активности мышц) были изучены эффекты профилактического введения рекомбинантного Hsp70 человека (HSPA1A) при эндотоксемии, вызванной введением липополисахарида (ЛПС), а также проанализировано изменение числа лейкоцитов у крыс в тех же условиях. Установлено, что профилактическое введение Hsp70 уменьшает величину ЛПС-индуцированного лихорадочного ответа у голубей и крыс и ускоряет нормализацию числа лейкоцитов в крови у крыс. Полученные данные свидетельствуют об универсальности физиологических механизмов реализации защитных свойств Hsp70 у данных представителей теплокровных животных.

https://doi.org/10.31857/S0044452921050090
PDF

Литература

Roth J, Blatteis CM (2014) Mechanisms of fever production and lysis: lessons from experimental LPS fever. Compr Physiol 4:1563–604. https://doi.org/10.1002/cphy.c130033

Evans SS, Repasky EA, Fisher DT (2015) Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15:335–349. https://doi.org/10.1038/nri3843

Dickson K, Lehmann C (2019) Inflammatory response to different toxins in experimental sepsis models. Int J Mol Sci 20:4341. https://doi.org/10.3390/ijms20184341

Kluger MJ, Kozak W, Conn C, Leon L, Soszynski D (1996) The adaptive value of fever. Infect Dis Clin North Am 10:1–20. https://doi.org/10.1016/S0891-5520(05)70282-8

Lapshina KV, Ekimova IV (2010) Effects of sleep deprivation on measures of the febrile reaction and the recovery of somatovisceral functions and sleep in endotoxemia. Neurosci Behav Physiol 40: 381–388. https://doi.org/10.1007/s11055-010-9268-6

Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol - Regul Integr Comp Physiol 301: 1207–1228. https://doi.org/10.1152/ajpregu.00109.2011

Gray DA, Marais M, Maloney SK (2013) A review of the physiology of fever in birds. J Comp Physiol B Biochem Syst Environ Physiol 183:297–312. https://doi.org/10.1007/s00360-012-0718-z

Garami A, Steiner AA, Romanovsky AA (2018) Fever and hypothermia in systemic inflammation. In: Handbook of Clinical Neurology. Elsevier B 157:565–597. https://doi.org/10.1016/B978-0-444-64074-1.00034-3

Sundgren-Andersson AK, Цstlund P, Bartfai T (1998) Simultaneous measurement of brain and core temperature in the rat during fever, hyperthermia, hypothermia and sleep. Neuroimmunomodulation 5: 241–247. https://doi.org/10.1159/000026344

Ekimova IV (2003) Changes in the metabolic activity of neurons in the anterior hypothalamic nuclei in rats during hyperthermia, fever, and hypothermia. Neurosci Behav Physiol 33:455–460. https://doi.org/10.1023/A:1023459100213

Kiyatkin EA, Sharma HS (2009) Permeability of the blood–brain barrier depends on brain temperature. Neuroscience 161: 926–939. https://doi.org/10.1016/j.neuroscience.2009.04.004

Gotoh M, Nagasaka K, Nakata M, Takashima I, Yamamoto S (2020) Brain temperature alters contributions of excitatory and inhibitory inputs to evoked field potentials in the rat frontal cortex. Front Cell Neurosci 14: 593027. https://doi.org/10.3389/fncel.2020.593027

Noorani AA, Yamashita H, Gao Y, Islam S, Sun Y, Nakamura T, Enomoto H, Zou K, Michikawa M (2020) High temperature promotes amyloid β-protein production and γ-secretase complex formation via Hsp90. J Biol Chem 295:18010–18022. https://doi.org/10.1074/jbc.RA120.013845

Dubй CM, Brewster AL, Baram TZ (2009) Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev 31: 366–371. https://doi.org/10.1016/j.braindev.2008.11.010

Walter EJ, Carraretto M (2016) The neurological and cognitive consequences of hyperthermia. Crit Care 20:199. https://doi.org/10.1186/s13054-016-1376-4

Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X, Cao B (2020) SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 395:1517–1520. https://doi.org/10.1016/S0140-6736(20)30920-X

Liu E, Lewis K, Al-Saffar H, Krall CM, Singh A, Kulchitsky VA, Corrigan JJ, Simons CT, Petersen SR, Musteata FM, Bakshi CS, Romanovsky AA, Sellati TJ, Steiner AA (2012) Naturally occurring hypothermia is more advantageous than fever in severe forms of lipopolysaccharide- and Escherichia coli-induced systemic inflammation. Am J Physiol - Regul Integr Comp Physiol 302:1372–1383. https://doi.org/10.1152/ajpregu.00023.2012

Zhang YH, Takahashi K, Jiang GZ (1994) In vivo production of heat shock protein in mouse peritoneal macrophages by administration of lipopolysaccharide. Infect Immun 62(10): 4140–4144. https://doi.org/10.1128/IAI.62.10.4140-4144.1994.

Meng X, Brown JM, AL, Nordeen SK, Franklin W, Harken AH, Banerjee A (1996) Endotoxin induces cardiac HSP70 and resistance to endotoxemic myocardial depression in rats. Am J Physiol 271:1316–1324. https://doi.org/10.1152/ajpcell.1996.271.4.C1316.

Sarson AJ, Read LR, Haghighi HR, Lambourne MD, Brisbin JT, Zhou H, Sharif S (2007) Construction of a microarray specific to the chicken immune system: profiling gene expression in B cells after lipopolysaccharide stimulation. Can J Vet Res 71:108–118.

Zhang A, Zhou X, Wang X, Zhou H. (2011) Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comp Biochem Physiol B Biochem Mol Biol 159:109–114. https://doi.org/10.1016/j.cbpb.2011.02.009

Chiaramonte M, Inguglia L, Vazzana M, Deidun A, Arizza V (2019) Stress and immune response to bacterial LPS in the sea urchin Paracentrotus lividus (Lamarck, 1816). Fish Shellfish Immunol 92:384–394. https://doi.org/10.1016/j.fsi.2019.06.017

Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710 https://doi.org/10.1016/j.febslet.2007.05.039

Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20: 665–680. https://doi.org/10.1038/s41580-019-0133-3.

Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging-a mini-review. Gerontology 55:550–558. https://doi.org/10.1159/000225957

Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425. https://doi.org/10.1146/annurev.immunol.20.100301.064801

Asea A (2008) Heat shock proteins and toll-like receptors. Handb Exp Pharmacol. (183):111–127.

Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, Grachev SV, Evgen'ev MB (2006) Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones 11: 276–286. https://doi.org/10.1379/csc-195r.1

Yurinskaya MM, Vinokurov MG, Zatsepina OG, Garbuz DG, Guzhova IV, Rozhkova EA, Suslikov AV, Karpov VL, Evgen'ev MB (2009) Exogenous heat shock proteins (HSP70) significantly inhibit endotoxin-induced activation of human neutrophils. Dokl Biol Sci 426:298–301. https://doi.org/10.1134/s0012496609030326

Rozhkova EA, Yurinskaya MM, Zatsepina OG, Garbuz DG, Karpov VL, Surkov S, Murashev AN, Ostrov VF, Margulis BA, Evgen'ev MB, Vinokurov MG (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci 94–107. https://doi.org/10.1111/j.1749-6632.2009.05375.x

Ostrov VF, Slashcheva GA, Zharmukhamedova TIu, Garbuz DG, Evgen'ev MB, Murashev AN (2010) Effect of the recombinant human heat shock protein HSP70 on the biochemical properties of blood in a model of endotoxic shock in rats. Bioorg Khim 36:337–342. https://doi.org/10.1134/s1068162010030052

Pastukhov YF, Ekimova I V., Hudik KA, Guzhova I V. (2005) Lipopolysaccharide-free 70-kDa heat shock protein has hypothermic and somnogenic effects. Dokl Biol Sci 402:167–170. https://doi.org/10.1007/s10630-005-0077-y

Пастухов ЮФ, Худик КА, Екимова ИВ (2010) Шапероны в регуляции и восстановлении физиологических функций. Российский физиологический журнал им. ИМ Сеченова. 96:708–725. [Pastuhov YuF, Hudik KA, Ekimova IV (2010) Shaperony v regulyacii i vosstanovlenii fiziologicheskih funkcij. Ros fiziol zh im IM Sechenova. 96:708–725. (In Russ)].

Shevtsov MA, Nikolaev BP, Yakovleva LY, Dobrodumov AV, Dayneko AS, Shmonin AA, Vlasov TD, Melnikova EV, Vilisov AD, Guzhova IV, Ischenko AM, Mikhrina AL, Galibin OV, Yakovenko IV, Margulis BA (2014) Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats. Drug Des Devel Ther 8:639–650. https://doi.org/10.2147/DDDT.S62024

Ekimova IV, Plaksina DV, Pastukhov YF, Lapshina KV, Lazarev VF, Mikhaylova ER, Polonik SG, Pani B, Margulis BA, Guzhova IV, Nudler E (2018) New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson's disease. Exp Neurol 306:199–208. https://doi.org/10.1016/j.expneurol.2018.04.012

Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon (Columba livia). Johns Hopkins Press. Baltimore. Maryland.

Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. 6th Edition. San Diego: Academic Press.

Rashotte M, Pastukhov IuF, Poliakov E, Henderson R (1998) Vigilance states and body temperature during the circadian cycle in fed and fasted pigeons (Columba livia). Am J Physiol 275:1690–1702. https://doi.org/10.1152/ajpregu.1998.275.5.R1690

Ronco C, Piccinni P, Rosner MH (eds) (2010) Endotoxemia and endotoxin shock: disease, diagnosis and therapy. Contrib. Nephrol. Basel. Karger. (167): 1424.

Krueger JM, Opp MR (2016) Sleep and microbes. Int Rev Neurobiol 131:207–225. https://doi.org/10.1016/bs.irn.2016.07.003

Grabbe N, Kaspers B, Ott D, Murgott J, Gerstberger R, Roth J (2020) Neurons and astrocytes of the chicken hypothalamus directly respond to lipopolysaccharide and chicken interleukin-6. J Comp Physiol B 190:75–85. https://doi.org/10.1007/s00360-019-01249-1

Antonova OY, Yurinskaya MM, Evgen'ev MB, Vinokurov MG (2013) The role of the TLR-dependent signaling pathway in the mechanism of phagocyte protection by exogenous heat shock protein HSP70 from the endotoxin action. Dokl Biol Sci 452:305–309. https://doi.org/ 10.1134/S0012496613050037

Vinokurov M, Ostrov V, Yurinskaya M, Garbuz D, Murashev A, Antonova O, Evgen'ev M (2012) Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress Chaperones. 17:89–101. https://doi.org/10.1007/s12192-011-0288-0. 2012.

Ferat-Osorio E, Sбnchez-Anaya A, Gutiйrrez-Mendoza M, Boscу-Gбrate I, Wong-Baeza I, Pastelin-Palacios R, Pedraza-Alva G, Bonifaz LC, Cortйs-Reynosa P, Pйrez-Salazar E, Arriaga-Pizano L, Lуpez-Macнas C, Rosenstein Y, Isibasi A (2014) Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. Inflamm (Lond) 11:19. https://doi.org/10.1186/1476-9255-11-19.

Yurinskaya MM, Kochetkova OYu, Shabarchina LI, Antonova OYu, Suslikov AV, Evgen’ev MB (2017) Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes. Cell Stress Chaperones 22:163–171. https://doi.org/10.1007/s12192-016-0743-z

Borges TJ, Lopes RL, Pinho NG, Machado FD, Souza AP, Bonorino C (2013) Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10 driven down-regulation of C/EBPβ and C/EBPδ. Int J Hyperthermia 29:455–463. https://doi.org/ 10.3109/02656736.2013.798037

Qureshi MA, Heggen CL, Hussain I (2000) Avian macrophage: effector functions in health and disease. Dev Comp Immunol 24:103–119. 2000. https://doi.org/10.1016/s0145-305x(99)00067-1

Rohde F, Schusser B, Hron T, Farkaљovб H, Plachэ J, Hдrtle S, Hejnar J, Elleder D, Kaspers B (2018) Characterization of chicken tumor necrosis factor-α, a long missed cytokine in birds. Front Immunol 9:605. https://doi.org/10.3389/fimmu.2018.00605.

Brownlie R, Allan B (2011) Avian toll-like receptors. Cell Tissue Res 343:121–130. https://doi.org/10.1007/s00441-010-1026-0

Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JP (2013) Unique features of chicken Toll-like receptors. Dev Comp Immunol 41:316–323. https://doi.org/10.1016/j.dci.2013.04.009