Abstract
The effect of azide, fluoride, orthovanadate and EDTA sodium salts on the ecto-ATPase activity in red blood cells (RBCs) of a scorpionfish (Scorpaena porcus L.) and thornback ray (Raja clavata L.) was studied. It was shown that under the influence of millimolar (mM) concentrations of the selected biochemical agents, significant differences in the hydrolytic activity of RBC plasma membrane ecto-ATPases were revealed in cartilaginous vs. teleost fish. For example, thronback ray RBC ecto-ATPase was practically insensitive to sodium azide. In contrast, scorpionfish RBC ecto-ATPase was sensitive to sodium azide, which blocked the enzyme activity by 65% at a concentration of 20 mM. Thornback ray RBC ecto-ATPase retained a significant activity (37%) at high (60 mM) concentrations of sodium fluoride, while scorpionfish RBC ecto-ATPase was almost completely blocked at this concentration. EDTA acted as a modifier of thornback ray ecto-ATPase activity: at concentrations of up to 6 mM, ATP hydrolysis was actively blocked (by 58%), and at higher concentrations, ecto-ATPase activity was stimulated (up to 20%). An increase in the EDTA concentration (up to 12 mM) in suspensions of scorpionfish RBCs constantly stimulated the inhibitory effect of the chelator (up to 52% vs. control). The activity of ecto-ATPases in RBCs of the studied fish species was weakly blocked by sodium orthovanadate. These differences may reflect a higher tolerance of thornback ray RBC ecto-ATPase to the effect of the above chemical reagents compared to a scorpionfish. The absence of the sodium azide inhibitory effect on thornback ray RBC ecto-ATPase suggests that this ecto-ATPase may be referred to a family of type 2 ecto-NTPDases (ENTPD2), while scorpionfish ecto-ATPase may belong to type 1 ecto-NTPDases (ENTPD1).
References
Barnstock G (2015) Blood cells: an historical account of the roles of purinergic signaling. Purinergic Signalling 11: 411–434. https://doi.org/10.1007/s11302-015-9462-7
Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: Functional implications and measurement of activities. Crit. Rev. Biochem. Mol. Biol 49 (6): 473–497. https://doi.org/ 10.3109/10409238.2014.953627
SilkinYuA, Silkina EN, Silkin MYu (2017) The dynamics of heat production in erythrocytes of the scorpion fish (Scorpaena porcus Linnaeus, 1758). In vitro 43(2):164 – 170. https://doi.org/ 10.1134/S1063074017020092
Silkin YA, Silkina EN (2017) The study of bioenergetic characteristics of the red blood cells of Black Sea fish the common stingray (Dasyatis pastinaca L.) and Black scorpionfish (Scorpaena porcus L.) Biophysics 62(3):434 – 439. https://doi.org/ 10.1134/S0006350917030204
al-Rashida M, Iqbal J. (2014) Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phophodiesterase, ecto-5'-nucleotidase and alkaline phosphatase inhibitors. Medicinal Research Reviews 34(4):703–743. https://doi.org/ 10.1002/med.21302
Knowles A, Nagy AK (1999) Ingibition of an ecto-ATP-diphosphohydrolase by azide. Eur. J. Biochem 262: 349–357. https://doi.org/ 10.1046/j.1432-1327.1999.00389.x
Pullman ME, Penefsky HS, Datta A, Racker E (1960) Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J. Biol. Chem. 235:3322– 329.
Казеннов А М, Маслова М Н, Савина ГВ (1984) Сравнительная характеристика свойств Na+,K+- АТФазы эритроцитов человека и карпа Cyprinos carpio. Ж. эвол. биохим. и физиол. 20(2):167–173. [Kazennov AM, Maslova MN, Savina GV (1984) Sravnitel'naya harakteristika svojstv Na+,K+- ATFazy eritrocitov cheloveka i karpa Cyprinos carpio. J Evol Biochem Physiol 20(2):167–173. (in Russ)].
Казеннов А. М., Маслова М. Н. (1980) Особенности активации детергентами Na,K-аденозинтрифосфатазы головного мозга позвоночных. Ж. эвол. биохим. и физиол. 16(50):430–436. [Kazennov A. M., Maslova M. N. (1980) Osobennosti aktivacii detergentami Na,K-adenozintrifosfatazy golovnogo mozga pozvonochnyh. J Evol Biochem Physiol 16(50):430–436.(in Russ)].
Chen, P.S., Jr., Toribara, T. Y., Warner, H. (1956) Microdetermination of phosphorus Anal. Chem, 28:1756 -1758.
Vasilyeva EV, Minkov IB, Fitin AF Vinogradov AD (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Biochem. J. 202:15–23. https://doi.org/ 10.1042/bj2020009
Ernster L, Jones LC (1962) Study of the nucleoside tri- and diphosphatase activities of rat liver microsomes. J. Cell Biol. 15:563–577. https://doi.org/ 10.1083/jcb.15.3.563
Strobel RS. Nagy AK, Knowles AF, Buegel J, Rosenberg MO (1996) Chicken oviductal ecto-ATP-diphosphohydrolase. Purification and characterization. J. Biol. Chem. 271: 16232–16331. https://doi.org/ 10.1074/jbc.271.27.16323
Plesner L (1995) Ecto-ATPases: identities and functions. Int. Rev. Cytol. 158:141–214. https://doi.org/ 10.1016/s0074-7696(08)62487-0
Treuheit MJ, Vaghy PL, Kirley TL (1992) Mg2+-ATPase from rabbit skeletal muscle transverse tubules is a 67-kilodalton glycoprotein. J. Biol. Chem. 267:11777–11782.
Kukulski F, Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Knowles AF, Robson3 SC, Kirley TL, Sevigny J. (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signalling 1:193–204. https://doi.org/ 10.1007/s11302-005-6217-х
Knowles AF, Li C (2006) Molecular cloning and characterization of expressed human ecto-nucleoside triphosphate diphosphohydrolase 8 (E-NTPDase 8) and its soluble extracellular domain. Biochemistry 45:7323–7333. https://doi.org/ 10.1021/bi052268e
Barbier O, Arreola-Mendoza L, Del Razo ML (2010) Molecular mechanisms of fluoride toxicity. Chemico-Biological Interactions 188:319–333. https://doi.org/ 10.1016/j.cbi.2010.07.011
Adamek E, Pawіowska-Gуral K, Bober K (2005) In vitro and in vivo effects of fluoride ions on enzyme activity. Ann. Acad. Med. Stetin 51 (2): 69–85.
Agalakova NI, Gusev GP (2011) Fluoride-induced death of rat erythrocytes in vitro. Toxicology In Vitro 25:1609–1618. https://doi.org/10.1016/j.tiv.2011.06.006
Antonny B, Bigay J, Chabre M. (1990) A novel magnesium-dependent mechanism for the activation of transducin by fluoride. FEBS Letters 268 (1):277 – 280. https://doi.org/ 10.1016/0014-5793(90)81027-l
Gutiérrez-Salinas J, García-Ortíz L, Morales González JA, Hernández-Rodríguez S, Ramírez-García S, Núñez-Ramos NR, Madrigal-Santillán E (2013) In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes. Scientific World Journal 2013:864–718. https://doi.org/ 10.1155/2013/864718
Suska M (2001) The effect of sodium fluoride on the adenine nucleotide pool in erythrocytes of Wistar rats. Int. J. Occup. Med. Environ. Health. 14(4): 369-373. PMID: 11885920
Qin J, Chai G, Brewer JM, Lovelace LL, Lebioda L. (2006) Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochem. 45:793–800. https://doi.org/10.1021/bi051 558s
Liao Y, Chen J, Brandt BW et al. (2015) Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLOS ONE 10.:e0122630. https ://doi. org/10.1371/journ al.pone.01226 30
Gambino R, Piscitelli J, Ackattupathil TA et al. (2009) Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis. Clin. Chem. 55:1019–1021. https ://doi.org/10.1373/clinc hem.2008.12170 7
Izquierdo-Vega JA, Sánchez-Gutiérrez M, Del Razo ML (2008) Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss. Toxicology and Applied Pharmacology 230(3):352–357. https://doi.org/ 10.1016/j.taap.2008.03.008. Epub 2008 Mar 28.
Anuradha CD, Kanno S, Hirano S (2001) Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Biol. Med. 31 (3):367 – 373. https://doi.org/ 10.1016/s0891-5849(01)00591-3
Sugiyama H, Matsugo S, Misu H et al. (2013) Regulation of the physiological effects of peroxidovanadium(V) complexes by the electronicnature of ligands. J. Inorg. Biochem. 121:66–76. https://doi.org/ 10.1016/j.jinorgbio.2012.12.014
Benabe JE, Echegoyen LA, Pastrana B, Martinez-Maldonado M (1987) Mechanism of inhibition of glycolysis by vanadate. J. Biol. Chem. 262(20):9555–9560. PMID: 3036865
Robinson JD (1981) Vanadate inhibition of brain (Ca2+ Mg2+)-ATPase. Neurochem. Res. 6(3):225–232. https://doi.org/ 10.1007/BF00964038
Barceloux DG (1999) Vanadium. J. Toxicol. Clin. Toxicol. 37(2):265–278. https://doi.org/ 10.1081/clt-100102425
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biological Trace Element Research 188:68–98. https://doi.org/ 10.1007/s12011-018-1540-6
Turner TL, Nguyen VH, McLauchlan CC, Dymon Z, Dorsey BM, Hooker JD, Jones MA (2012) Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J Inorg. Biochem. 108:96–104. https://doi.org/10.1016/j.jinorgbio.201109.009
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim. Pol. 59(2):195–200. PMID: 22693688
Венкстерн ТВ, Энгельгардт ВА (1957) аспространение экто-аденозилполифосфатазы и характеристика некоторых ее свойств. Биохимия 22(5):911–916. [Venkstern TV, Engelhardt VA (1957) Distribution of ecto-adenosinpolyphosphatase and characteristics of certain of its properties. Biochim. 22 (5):911 – 916 (in Russ)].
Wolf HU (1972) Effects of Ethylenediaminetetra-acetate and Deoxycholate on Kinetic Constants of the Calcium Ion-Dependent Adenosine Triphosphatase of Human Erythrocyte Membranes. Biochem. J. 130:311–314. https://doi.org/ 10.1042/bj1300311
Schatzman HJ,Vincenzi FF (1969) Calcium movements across the membrane of human red cells. J. Physiol. 201 (2):369–395. https://doi.org/ 10.1113/jphysiol.1969.sp008761
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L (2013) Calcium in red blood cells – a perilous balance. Int. J. Mol. Sci. 14(5):9848–9872. https://doi.org/10.3390/ijms14059848
Durriti-Cubria M, Seifen E, Schmidt HL (1967) Calcium content and uptake by erythrocyte stomata. Hoppe Seilerz Z. Physiol. Chem. 348(8):1043–1046. PMID: 4233216
Christoforidis S, Papamarcaki T, Galaris D, Kellner R, Tsolas O (1995) Purification and properties of human placental ATP diphosphohydrolase. Eur. J. Biochem. 234:66–74. https://doi.org/ 10.1111/j.1432-1033.1995.066_c.x
Jensen FB, Agnisola C, Novak I (2009) ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout. Comparative Biochemistry and Physiology Part A 152:351–356. https://doi.org/10.1016/j.cbpa.2008.11.007