ЭКСПРЕССИЯ МАРКЕРОВ НЕЙРОВОСПАЛЕНИЯ И АПОПТОЗА В ВИСОЧНОЙ ДОЛЕ ГОЛОВНОГО МОЗГА У ПАЦИЕНТОВ С ФАРМАКОРЕЗИСТЕНТНОЙ ЭПИЛЕПСИЕЙ
PDF

Ключевые слова

фармакореистентность
височная эпилепсия
апоптоз
нейровоспаление
цитокины
иммуноблоттинг

Аннотация

Современные стратегии лечения эпилепсии основаны главным образом на нормализации взаимодействия возбуждающей и тормозной системы, что оказывается не эффективным у пациентов с фармакорезистентной формой эпилепсии. Нейровоспалительные процессы в эпилептическом очаге и в его перифокальной зоне могут быть причиной развития апоптоза, а также могут играть роль в формировании лекарственной устойчивости. В биоптатах серого и белого вещества височной доли головного мозга пациентов с фармакорезистентной эпилепсией, полученных интраоперационно, с помощью иммуноблоттинга было проанализировано содержание про- и антиапоптотических белков (p-NF-kB, TNF-α, p53, FAS, caspase-3, caspase-9). В коре и белом веществе перифокальной зоны выявлено повышенное содержание проапоптотических белков на фоне дисбаланса белков путей выживания. При этом, вероятно, активация апоптоза по внешнему пути происходит в перифокальной зоне, тогда как в эпилептическом очаге присутствуют белки характерные для активации протективных путей. Активное нейровоспаление в эпилептическом очаге и перифокальной зоне височной доли может способствовать развитию резистентности к противоэпилептическим препаратам и прогрессированию нейродегенерации у таких пациентов.

https://doi.org/10.31857/S004445292105003X
PDF

Литература

Громов СА, Сивакова НА (2019) Современные аспекты разрешения эпилепсии. Эпилепсия и пароксизмальные состояния 11:21–26. [Gromov SA, Sivakova NA (2019) Resolved epilepsy: an updated insight. Epilepsiya i paroksizmal’nye sostoyaniya / Epilepsy and paroxysmal conditions 11:21-26 (In Russ)]. https://doi.org/10.17749/2077-8333.2019.11.1.21-26

Chen Z, Brodie MJ, Liew D, Kwan P (2018) Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study. JAMA Neurology 75:279–286. https://doi.org/10.1001/jamaneurol.2017.3949

Lotfinia M, Maloumeh EN, Asaadi S, Omidbeigi M, Sharifi G, Asadi B (2019) Health-related quality of life after epilepsy surgery: A prospective, controlled follow-up on the Iranian population. Scientific reports 9:7875. https://doi.org//10.1038/s41598-019-44442-6

Hader WJ, Tellez-Zenteno J, Metcalfe A, Hernandez-Ronquillo L, Wiebe S, Kwon C-S, Jette N (2013) Complications of epilepsy surgery: A systematic review of focal surgical resections and invasive EEG monitoring. Epilepsia 54:840–847. https://doi.org/10.1111/epi.12161

Younus I, Reddy DS (2017) Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy. Pharmacology & Therapeutics 177:108–122. https://doi.org/10.1016/j.pharmthera.2017.03.002

Sharma S, Puttachary S, Thippeswamy T (2019) Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy. Journal of neuroscience research 97:1363–1377. https://doi.org//10.1002/jnr.24205

Zavala-Tecuapetla C, Cuellar-Herrera M, Luna-Munguia H (2020) Insights into Potential Targets for Therapeutic Intervention in Epilepsy. International journal of molecular sciences 21:8573. https://doi.org/10.3390/ijms21228573

Löscher W, Friedman A (2020) Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both? International journal of molecular sciences 21:591. https://doi.org/10.3390/ijms21020591

Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Löscher W, Louboutin JP, Mishto M, Norwood BA, Palma E, Poulter MO, Terrone G, Vezzani A, Kaminski RM (2017) Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 58:27–38. https://doi.org/10.1111/epi.13783

Соколова ТВ, Забродская ЮМ, Парамонова НМ, Доброгорская ЛН, Куралбаев АК, Касумов ВР, Ситовская ДА (2017) АПОПТОЗ КЛЕТОК ГОЛОВНОГО МОЗГА В ЭПИЛЕПТИЧЕСКИХ ОЧАГАХ ПРИ ФАРМАКОРЕЗИСТЕНТНОЙ ВИСОЧНОЙ ЭПИЛЕПСИИ. Трансляционная медицина 4:22-33. [Sokolova TV, Zabrodskaya YM, Paramonova NM, Dobrogorskaya LN, Kuralbaev AK, Kasumov VR, Sitovskaya DА (2017) APOPTOSIS OF BRAIN CELLS IN EPILEPTIC FOCUS AT PHAPMACRESISTANT TEMPORAL LOBE EPILEPSY. Translational Medicine 4:22–33. (In Russ.)]. https://doi.org/10.18705/2311-4495-2017-4-6-22-33

Fuller OK, Whitham M, Mathivanan S, Febbraio MA (2020) The Protective Effect of Exercise in Neurodegenerative Diseases: The Potential Role of Extracellular Vesicles. Cells 9:2182. https://doi.org/10.3390/cells9102182

Yamanaka G, Morichi S., Takamatsu T, Watanabe Y, Suzuki S, Ishida Y, Oana S, Yamazaki T, Takata F, Kawashima H (2021) Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. International journal of molecular sciences 22:4395. https://doi.org/10.3390/ijms22094395

Sah E, Krishnamurthy S, Ahmidouch MY, Gillispie GJ, Milligan C, Orr ME (2021) The Cellular Senescence Stress Response in Post-Mitotic Brain Cells: Cell Survival at the Expense of Tissue Degeneration. Life 11:229. https://doi.org/10.3390/life11030229.

Spanoghe J, Larsen LE, Craey E, Manzella S, Van Dycke A, Boon P, Raedt R (2020) The Signaling Pathways Involved in the Anticonvulsive Effects of the Adenosine A1 Receptor. International journal of molecular sciences 22:320. https://doi.org/10.3390/ijms22010320

Bacher S, Meier-Soelch J, Kracht M, Schmitz ML (2021) Regulation of Transcription Factor NF-κB in Its Natural Habitat: The Nucleus. Cells. 10:753. https://doi.org/10.3390/cells10040753.

Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH (2021) Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci. 15:656921. https://doi.org/10.3389/fnins.2021.656921

Li G, Yamasaki R, Fang M, Masaki K, Ochi H, Matsushita T, Kira JI (2018) Novel disease-modifying anti-rheumatic drug iguratimod suppresses chronic experimental autoimmune encephalomyelitis by down-regulating activation of macrophages/microglia through an NF-κB pathway. Sci Rep. 8:1933. https://doi.org/0.1038/s41598-018-20390-5

Mao X-Y, Zhou H-H, Jin W-L (2019) Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy. Frontiers in Neuroscience 13:512. https://doi.org/10.3389/fnins.2019.00512

Benusa SD, Lafrenaye AD (2020) Microglial process convergence on axonal segments in health and disease. Neuroimmunol Neuroinflamm. 7:23-39. https://doi.org/10.20517/2347-8659.2019.28

Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. Journal of Neuroinflammation 15:144. https://doi.org/10.1186/s12974-018-1192-7

Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M (2021) Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunology 12:644294. https://doi.org/10.3389/fimmu.2021.644294

Rocha NKR, Themoteo R, Brentani H, Forlenza OV, De Paula VJR (2020) Neuronal-Glial Interaction in a Triple-Transgenic Mouse Model of Alzheimer's Disease: Gene Ontology and Lithium Pathways. Front Neurosci. 14:579984 https://doi.org/10.3389/fnins.2020.579984

Zheng P, Chen Q, Tian X, Qian N, Chai P, Liu B, Hu J, Blackstone C , Zhu D, Teng J, Chen, J (2018) DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling. Cell Research 28:833–854. https://doi.org/10.1038/s41422-018-0065-z

Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C (2021) Neutrophils: Many Ways to Die. Front Immunology 12:631821. https://doi.org/10.3389/fimmu.2021.631821

Yu H, Lin L, Zhang Z, Zhang H, Hu H (2020) Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Therapy 5:209. https://doi.org/10.1038/s41392-020-00312-6

Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P (2014) Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-κB/p65 activation. PLoS One 9:e96734. https://doi.org/10.1371/journal.pone.0096734

Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A (2017) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death and Differentiation 25:104–113. https://doi.org/10.1038/cdd.2017.169

Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, Tamura RE (2018) p53 and metabolism: from mechanism to therapeutics. Oncotarget 9:23780-23823. https://doi.org/10.18632/oncotarget.25267

Sazhina TA, Sitovskaya DA, Zabrodskaya YM, Bazhanova ED (2020) Functional Imbalance of Glutamate- and GABAergic Neuronal Systems in the Pathogenesis of Focal Drug-Resistant Epilepsy in Humans. Bulletin of Experimental Biology and Medicine 168:519-522. https://doi.org/10.1007/s10517-020-04747-3