INDICATORS OF HYPOXIA TOLERANCE ARE DETERMINED BY THE CELLS OF RAT BLOOD
PDF (Русский)

Keywords

hypoxia tolerance
blood cells
Wistar rats
coagulogram

Abstract

Even though hypoxia tolerance is mainly determined genetically, the research of the individual variability in the tolerance to hypoxia is important. In this study, we investigated the numbers of circulating blood cells and the coagulation system in Wistar rats as predictors that allow splitting the animal population between hypoxia tolerant and non-tolerant. The proof of the choice of reasonable predictors was the matching population split in accordance with detected individual parameters and the results of testing in a pressure chamber with rarefied air corresponding to the altitude of 11500 m above the sea level. The quantitative assessment of circulating blood cells was performed according to eighteen parameters before and after hypoxic exposure. The differences between low-tolerant (LT), high-tolerant (HT) and medium-tolerant (MT) animals to hypoxia were identified by five parameters: white blood cell counts (WBC), granulocyte counts (Gran#), red blood cell counts (RBC), % reticulocyte (RTC) and mean corpuscular hemoglobin (MCH). The values of RBC, RTC, and MCH in HT rats were significantly higher than in LT animals (by 1.4, 1.9, and 1.1 times, respectively). The values of WBC and Gran# in HT rats were lower than in LT individuals. The hypoxia tolerance index (HTI) was calculated using the original formula. It was found that HTI in LT rats is ≤ 0.203, in HT rats ≥ 0.335, and in MT rats < 0.335 but > 0.203. The activated partial thromboplastin time (APTT), the thrombin time (TT), and the prothrombin time (PT) decreased, but the fibrinogen level increased after testing in a pressure chamber. LT rats were characterized by the lowest values of APTT, TT, and PT and the highest values of the fibrinogen level. As a result of the study, it was determined that one of the most important mechanisms causing a high tolerance to hypoxia is the maintenance mechanism of reciprocal relationships between the complex of the RBC indicators, which tend to increase with hypoxia, and the indicators of granulocytes, which are characterized by a decrease.

https://doi.org/10.31857/S0044452921060061
PDF (Русский)

References

Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47-71. https://doi.org/10.1146/annurev-pathol-012513-104720

Luks AM, Swenson ER, Bärtsch P (2017) Acute high-altitude sickness. Eur Respir Rev 26(143):160096. https://doi.org/10.1183/16000617.0096-2016

Multhoff G, Vaupel P. Hypoxia Compromises Anti-Cancer Immune Responses. Adv Exp Med Biol. 2020;1232:131-143. https://doi.org/10.1007/978-3-030-34461-0_18

Chen YC, Ho CW, Tsai HH, Wang JS (2015) Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress. Clin Sci (Lond) 128(7):425-436. https://doi.org/10.1042/CS20140498

McGarry T, Biniecka M, Veale DJ, Fearon U (2018) Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 125:15-24. https://doi.org/10.1016/j.freeradbiomed.2018.03.042

Gonzalez NC, Wood JG (2010) Alveolar hypoxia-induced systemic inflammation: what low PO(2) does and does not do. Adv Exp Med Biol 662:27-32. https://doi.org/10.1007/978-1-4419-1241-1_3

Дремина НН, Шурыгин МГ, Шурыгина ИА (2016) Эндотелины в норме и патологии. Международный журнал прикладных и фундаментальных исследований. Медицинские науки. INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH. MEDICAL SCIENCES. 10:210-214 [Dremina NN, Shurygin MG, Shurygina IA (2016) Endothelins in standard and pathology. International Journal of Applied and Fundamental Research. Medical sciences. INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH. MEDICAL SCIENCES 10:210-214. (In Russ.)]

Ржепецкая МК (2017) Генетические маркёры как показатель устойчивости человека к различным эколого-профессиональным факторам. Известия Российской Военно-медицинской академии. 36(4):6-13. [Rzhepetskaya MK (2017) Genetic markers as an indicator of human resistance to various environmental and occupational factors. Proceedings of the Russian Military Medical Academy 36(4): 6-13. (In Russ.)]

Dzhalilova DS, Kosyreva AM, Diatroptov ME, Makarova OV (2017) Relationship between Hypoxic Resistance and the Phase of 4-Day Corticosterone Biorhythm in Adult Male Rats. Bull Exp Biol Med 163:687–690. https://doi.org/ 10.1007/s10517-017-3879-7

Pavlik LL, Mikheeva IB, Al'-Mugkhrabi YM, Berest VP, Kirova YI, Germanova EL, Luk'yanova LD, Mironova GD (2018) Specific Features of Immediate Ultrastructural Changes in Brain Cortex Mitochondria of Rats with Different Tolerance to Hypoxia under Various Modes of Hypoxic Exposures. Bull Exp Biol Med. 164(3):376-381. https://doi.org/10.1007/s10517-018-3993-1

Каркищенко НН (2017) Биомедицинское (доклиническое) изучение антигипоксической активности лекарственных средств. Методические рекомендации. М. ФМБА России [Karkishchenko NN (2017) Biomedicinskoe (doklinicheskoe) izuchenie antigipoksicheskoj aktivnosti lekarstvennyh sredstv. Metodicheskie rekomendacii [Biomedical (preclinical) study of antihypoxic activity of drugs. Methodological recommendations]. M. FMBA of Russia (In Russ.)]

Байбурина ГА, Нургалеева ЕА, Дроздова ГА (2016) Влияние экстремальной гипоксии на гормональный профиль и динамику свободнорадикальных процессов в головном мозге крыс с различным фенотипом устойчивости к гипоксии. Здоровье и образование в XXI веке. 18(6):95-98. [Baiburina GA, Nurgalieva EA, Drozdova GA (2016) Influence of extreme hypoxia on the hormonal profile and dynamics of free radical processes in the brain of rats with different phenotypes of resistance to hypoxia. Health and education in the XXI century. 2016;18(6):95-98 (In Russ.)]

Hirai K, Furusho H, Hirota K, Sasaki H (2018) Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss. Int J Oral Sci. 10(2):12. https://doi.org/10.1038/s41368-018-0015-0.

Brooks JT, Elvidge GP, Glenny L, Gleadle JM, Liu C, Ragoussis J, Smith TG, Talbot NP, Winchester L, Maxwell PH, Robbins PA (2009) Variations within oxygen-regulated gene expression in humans. J Appl Physiol (1985). 106(1):212-220. https://doi.org/10.1152/japplphysiol.90578.2008

van Patot M. C., Gassmann M (2011) Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2a. High Alt Med Biol. 12(2):157-167. https://doi.org/10.1089/ham.2010.1099.

Kabei K, Tateishi Y, Shiota M, Osada-Oka M, Nishide S, Uchida J, Nakatani T, Matsunaga S, Yamaguchi T, Tomita S, Miura K (2020) Effects of orally active hypoxia inducible factor alpha prolyl hydroxylase inhibitor, FG4592 on renal fibrogenic potential in mouse unilateral ureteral obstruction model. J Pharmacol Sci. 142(3):93-100. https://doi.org/10.1016/j.jphs.2019.12.002

Gaertner F, Massberg S (2016) Blood coagulation in immunothrombosis-At the frontline of intravascular immunity. Semin Immunol 28(6):561-569. https://doi.org/10.1016/j.smim.2016.10.010

Tikhomirova I, Petrochenko E, Malysheva Y, Ryabov M, Kislov N (2016) Interrelation of blood coagulation and hemorheology in cancer. Clin Hemorheol Microcirc 64(4):635-644. https://doi.org/10.3233/CH-168037.

Kondashevskaya MV, Diatroptov ME (2013) Behavioral Characteristics of Ovariectomied Wistar Rats Trained in a Maze. Effect of Mental Stress and Castration for Infradian Rhythms. Bull Exp Biol Med 155:272–276. https://doi.org/10.1007/s10517-013-2130-4

Dzhalilova DS, Kosyreva AM, Diatroptov ME, Makarova MA, Makarova OV (2019) Liver and lung morphology and phagocytic activity of peripheral blood cells during systemic inflammatory response in male rats with different resistance to hypoxia. Clin Exp Morphol 29:47–55. (In Russ.). https://doi.org/31088/2226-5988-2019-29-1-47-55

Нагорнев СН, Бобровницкий ИП, Хрипач ЛВ, Худов ВВ (2017) Иммуно-биохимический скрининг и метаболические нагрузочные тесты в оценке функциональных резервов организма. Russian Journal of Rehabilitation Medicine 2:3-38 [Nagornev SN, Bobrovnitsky SP, Khripach LV, Khudov VV (2017) Immuno-biochemical screening and metabolic load tests in the assessment of functional reserves of the body. Russian Journal of Rehabilitation Medicine 2:3-38 (In Russ.)]

Finsterbusch M, Schrottmaier WC, Kral-Pointner JB, Salzmann M, Assinger A (2018) Measuring and interpreting platelet-leukocyte aggregates. Platelets 29:677–685. https://doi.org/10.1080/09537104.2018.1430358

Lodge KM, Cowburn AS, Li W, Condliffe AM (2020) The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host. Int J Mol Sci 21:1183. doi:10.3390/ijms21041183

Egners A, Erdem M, Cramer T (2016) The Response of Macrophages and Neutrophils to Hypoxia in the Context of Cancer and Other Inflammatory Diseases. Mediators Inflamm. Article ID 2053646. https://doi.org/10.1155/2016/2053646

Obernikhin SS, Yaglova NV, Nazimova SV, Yaglov VV, Timokhina EP (2019) Transcriptional regulation of morphogenesis of rat adrenal zona glomerulosa during postnatal development. Clin Exp Morphol. 8:48–54. (In Russ.). https://doi.org/10.31088/2226-5988-2019-30-2-48-54

Гридин ЛА (2016) Современные представления о физиологических и лечебно-профилактических эффектах действия гипоксии и гиперкапнии. Журнал «Медицина» 3:45-68 [Gridin LA (2016) Modern ideas about the physiological and therapeutic and preventive effects of hypoxia and hypercapnia. Journal of Medicine 3:45-68 (In Russ.)]

Lv D, Xu Y, Cheng H, Ke Y, Zhang X, Ying K (2020) A novel cell-based assay for dynamically detecting neutrophil extracellular traps-induced lung epithelial injuries. Exp Cell Res. 394:112101. https://doi.org/10.1016/j.yexcr.2020.112101

Colling ME, Kanthi Y (2020) COVID–19-associated coagulopathy: An exploration of mechanisms. Vasc Med 25:471–478. https://doi.org/10.1177/1358863X20932640

Shang C, Wuren T, Ga Q, Bai Z, Guo L, Eustes AS, McComas KN, Rondina MT, Ge R (2020) The human platelet transcriptome and proteome is altered and pro-thrombotic functional responses are increased during prolonged hypoxia exposure at high altitude. Platelets 31:33–42. https://doi.org/10.1080/09537104.2019.1572876

Viecca M, Radovanovic D, Forleo GB, Santus P. (2020) Enhanced platelet inhibition treatment improves hypoxemia in patients with severe Covid-19 and hypercoagulability. A case control, proof of concept study. Pharmacol Res 158:104950. https://doi.org/10.1016/j.phrs.2020.104950

Li X, Yang Y, Liu L, Yang X, Zhao X, Li Y, Ge Y, Shi Y, Lv P, Zhang J, Bai T, Zhou H, Luo P, Huang S (2020) Effect of combination antiviral therapy on hematological profiles in 151 adults hospitalized with severe coronavirus disease 2019. Pharmacol Res 160:105036. https://doi.org/10.1016/j.phrs.2020.105036

Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, Chatterjee T, Bajaj N, Sengupta S, Ganju L, Singh SB, Ashraf MZ (2014) Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood 123(8):1250-60. https://doi.org/10.1182/blood-2013-05-501924

O'Brodovich HM, Andrew M, Gray GW, Coates G (1984) Hypoxia alters blood coagulation during acute decompression in humans. J Appl Physiol Respir Environ Exerc Physiol. 56(3):666-670. https://doi.org/10.1152/jappl.1984.56.3.666

Bärtsch P, Haeberli A, Hauser K, Gubser A, Straub PW (1988) Fibrinogenolysis in the absence of fibrin formation in severe hypobaric hypoxia. Aviat Space Environ Med. 59(5):428-432.

Atencio AC, Chao PY, Chen AY, Reeve EB (1969) Fibrinogen response to corticotropin preparations in rabbits. Am J Physiol. 216(4):773-780. https://doi.org/10.1152/ajplegacy.1969.216.4.773

Цейликман ВЭ, Цейликман ОБ, Синицкий АИ, Лавин ЕА, Лаптева ИА, Горностаева АБ, Борисенков АВ, Нусратов МИ, Романов ДА (2008) Биохимические стратегии адаптации в условиях хронического стресса. Вестник ЮУрГУ 4:56–57 [Tseilikman VE, Tseilikman OB, Sinitsky AI, Levin E, Lapteva IA, Gornostaeva AB, Borisenkov AB, Nusratov MI, Romanov DA (2008) Biochemical strategies of adaptation in conditions of chronic stress. Bulletin of South Ural State University 4:56-57 (In Russ.)].

Байбурина ГА, Нургалеева ЕА, Никитина ИЛ, Булыгин КВ., Самигуллина АФ., Аглетдинов ЭФ (2017) Взаимосвязи уровней циркулирующего кортикостерона, экспрессии центральных кортикостероидных рецепторов и изменения поведенческой активности крыс с разной устойчивостью к гипоксии в динамике восстановления после экстремальной гипоксии. Современные проблемы науки и образования. 4:36 [Baiburina GA, Nurgaleeva E A, Nikitina IL, Bulygin KV., Samigullina A F., Agletdinov EF (2017) The relationship between the levels of circulating corticosterone, the expression of central corticosteroid receptors, and changes in the behavioral activity of rats with different resistance to hypoxia in the dynamics of recovery after extreme hypoxia. Modern problems of science and education. 4:36]

Perez-Tejada J, Garmendia L, Labaka A, Vegas O, Gómez-Lazaro E, Arregi A (2019) Active and Passive Coping Strategies: Comparing Psychological Distress, Cortisol, and Proinflammatory Cytokine Levels in Breast Cancer Survivors. Clin J Oncol Nurs. 23(6):583-590. https://doi.org/10.1188/19.CJON.583-590