ОСЬ КИШЕЧНИК–МОЗГ И РЕЦЕПТОРЫ, АКТИВИРУЕМЫЕ ПЕРОКСИСОМНЫМИ ПРОЛИФЕРАТОРАМИ КАК ФАКТОРЫ РЕГУЛЯЦИИ ЭПИЛЕПТОГЕНЕЗА
PDF

Ключевые слова

эпилепсия
PPARs
ось кишечник – мозг
кишечная микробиота
блуждающий нерв
кишечные гормоны

Аннотация

Несмотря на активно проводимые исследования, значительная часть больных эпилепсией страдает фармакорезистентными формами заболевания. Это делает актуальным поиск новых методов лечения. В последние годы активно обсуждается возможная роль кишечно-мозговых взаимодействий в патогенезе эпилепсии. Последние экспериментальные и клинические исследования показывают корреляцию баланса кишечной микробиоты и выраженности эпилептогенеза. При этом различные методы модификации состава микробиоты показывают существенное влияние на течение эпилепсии. Тем не менее, остается открытым вопрос основного рецепторного звена оси кишечник - мозг, своеобразного интерфейса между кишечными микроорганизмами и регуляторными системами организма.

Целью настоящего обзора является анализ путей и степени вовлеченности кишечной микробиоты в патогенез и саногенез эпилепсии. Среди таких путей выделены нервно-проводниковый, метаболитный, иммунный и эндокринный. Анализ полученных на сегодняшний день данных показывает существенную роль в этих процессах рецепторов, активируемых пролифератором пероксисом (PPARs). Экспрессия этих рецепторов в основных структурах оси кишечник - мозг, наличие их лигандов среди метаболитов представителей микробиоты, а также описанные для агонистов некоторых PPARs противосудорожная и/или нейропротекторная активность позволяют выдвинуть гипотезу о роли PPARs в организме в качестве упомянутого выше сигнального интерфейса в оси кишечник - мозг. Отдельно в работе рассматривается терапевтический потенциал агонистов PPARs при лечении эпилепсии.

https://doi.org/10.31857/S0044452921040070
PDF

Литература

Sander JW (2003) The epidemiology of epilepsy revisited. CurrOpinNeurol. 16:165-170. https://doi.org/10.1097/01.wco.0000063766.15877.8e

Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014) Gut Microbes and the Brain: Paradigm Shift in Neuroscience. J Neurosci 34:15490–15496.https://doi.org/10.1523/JNEUROSCI.3299-14.2014

Jena A, Montoya CA, Mullaney JA, Dilger RN, Young W, McNabb WC, Roy NC (2020) Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Front Integr Neurosci 14:44. https://doi.org/10.3389/fnint.2020.00044

Moysidou CM, Owens RM (2021) Advances in modelling the human microbiome–gut–brain axis in vitro. Biochem Soc Transact 49 (1):187-201. https://doi: 10.1042/BST20200338

Shaikh MF, Lee CY, Chen WN, Shaikh FA (2020) The Gut-Brain-Axis on the Manifestation of Depressive Symptoms in Epilepsy: An Evidence-Driven Hypothesis. Front Pharmacol 11:465.https://doi.org/10.3389/fphar.2020.00465

Iannone LF, Preda A, Blottière HM, Clarke G, Albani D, Belcastro V, Carotenuto M, Cattaneo A, Citraro R, Ferraris C, Ronchi F, Luongo G, Santocchi E, Guiducci L, Baldelli P, Iannetti P, Pedersen S, Petretto A, Provasi S, Selmer K, Spalice A, Tagliabue A, Verrotti A, Segata N, Zimmermann J, Minetti C, Mainardi P, Giordano C, Sisodiya S, Zara F, Russo E, Striano P (2019) Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev Neurother 19:1037-1050.https://doi.org/10.1080/14737175.2019.1638763

De Caro C, Iannone LF, Citraro R, Striano P, De Sarro G, Constanti A, Cryan JF, Russo E (2019) Can we ‘seize’ the gut microbiota to treat epilepsy? Neurosci Biobehav Rev 107:750-764. https://doi.org/10.1016/j.neubiorev.2019.10.002

Jiang C, Li G, Huang P, Liu Z, Zhao B (2017) The Gut Microbiota and Alzheimer’s Disease. J Alzheimer’s Dis 58:750-764. https://doi.org/10.3233/JAD-161141

Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Mirabile D, Bellandi D, Gentile S, Belotti G, Villani D, Harach T, Bolmont T, Padovani A, Boccardi M, Frisoni GB (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60-68.https://doi.org/10.1016/j.neurobiolaging.2016.08.019

Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB, Keshavarzian A (2011) Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson’s Disease. PLoS One 6:e28032. https://doi.org/10.1371/journal.pone.0028032

Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, Broughton E, Hagan H, Carroll C (2014) Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol 127:235-41. https://doi.org/10.1007/s00401-013-1214-6

Mangiola F (2016) Gut microbiota in autism and mood disorders. World J Gastroenterol 22. https://doi.org/10.3748/wjg.v22.i1.361

Liang S, Wu X, Hu X, Wang T, Jin F (2018) Recognizing Depression from the Microbiota–Gut–Brain Axis. Int J Mol Sci 19: 1592.https://doi.org/10.3390/ijms19061592

Chu F, Shi M, Lang Y, Shen D, Jin T, Zhu J, Cui L (2018) Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators Inflamm 2018:8168717. https://doi.org/10.1155/2018/8168717

Dahlin M, Prast-Nielsen S (2019) The gut microbiome and epilepsy. EBioMedicine 44: 741-746. https://doi.org/10.1016/j.ebiom.2019.05.024

Chen C-H, Lin C-L, Kao C-H (2015) Irritable Bowel Syndrome Increases the Risk of Epilepsy. Medicine (Baltimore) 94:e1497. https://doi.org/10.1097/MD.0000000000001497

Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, Moayyedi P (2019) Gut Microbiota in Patients With Irritable Bowel Syndrome—A Systematic Review. Gastroenterology 157:97-108. https://doi.org/10.1053/j.gastro.2019.03.049

Peng A, Qiu X, Lai W, Li W, Zhang L, Zhu X, He S, Duan J, Chen L (2018) Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res 147:102-107.https://doi.org/10.1016/j.eplepsyres.2018.09.013

Xie G, Zhou Q, Qiu C-Z, Dai W-K, Wang H-P, Li Y-H, Liao J-X, Lu X-G, Lin S-F, Ye J-H, Ma Z-Y, Wang W-J (2017) Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol 23:6164-6171. https://doi.org/10.3748/wjg.v23.i33.6164

Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, Blanco JR (2018) The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef Microbes 9:875–881. https://doi.org/10.3920/BM2018.0018

Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F (2019) Ketogenic Diet and Microbiota: Friends or Enemies? Genes (Basel) 10:534. https://doi.org/10.3390/genes10070534

Linefeed M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T, Andersson B, Borenstein E, Dahlin M, Prast-Nielsen S (2019) The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy.Biofilms Microbiomes 5:5. https://doi.org/10.1038/s41522-018-0073-2

Shen W, Gaskins HR, McIntosh MK (2014) Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J Nutr Biochem 25:270-280. https://doi.org/10.1016/j.jnutbio.2013.09.009

Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY (2018) The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 173:1728-1741.e13. https://doi.org/10.1016/j.cell.2018.04.027

Eor JY, Tan PL, Son YJ, Kwak MJ, Kim SH (2021) Gut microbiota modulation by both Lactobacillus fermentum MSK 408 and ketogenic diet in a murine model of pentylenetetrazole-induced acute seizure. Epilepsy Res 169:106506. https://doi.org/10.1016/j.eplepsyres.2020.106506

Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25: 521-528. https://doi.org/10.1111/nmo.12110

Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047-3052. https://doi.org/10.1073/pnas.1010529108

Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263-275. https://doi.org/10.1113/jphysiol.2004.063388

Konno R, Oowada T, Ozaki A, Iida T, Niwa A, Yasumura Y, Mizutani T (1993) Origin of D-alanine present in urine of mutant mice lacking D-amino-acid oxidase activity. Am J Physiol Liver Physiol 265:G699-G703. https://doi.org/10.1152/ajpgi.1993.265.4.G699

Kapur J (2018) Role of NMDA receptors in the pathophysiology and treatment of status e pilepticus. Epilepsia Open 3:165-168.https://doi.org/10.1002/epi4.12270

Chapman AG (1998) Chapter 24 Glutamate receptors in epilepsy. https://doi: 10.1016/s0079-6123(08)60449-5

Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV., Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV., Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O’Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG (2019) The Microbiota-Gut-Brain Axis. Physiol Rev 99:1877-2013.https://doi.org/10.1152/physrev.00018.2018

Hoban AE, Stilling RM, Moloney G, Shanahan F, Dinan TG, Clarke G, Cryan JF (2018) The microbiome regulates amygdala-dependent fear recall. Mol Psychiatry 23:1134–1144. https://doi.org/10.1038/mp.2017.100

Luczynski P, Whelan SO, O’Sullivan C, Clarke G, Shanahan F, Dinan TG, Cryan JF (2016) Adult microbiota‐deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci 44:2654-2666. https://doi.org/10.1111/ejn.13291

Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26:98–107. https://doi.org/10.1111/nmo.12236

Chinna Meyyappan A, Forth E, Wallace CJK, Milev R (2020) Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry 20:299. https://doi.org/10.1186/s12888-020-02654-5

He Z, Cui B-T, Zhang T, Li P, Long C-Y, Ji G-Z, Zhang F-M (2017) Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: The first report. World J Gastroenterol 23:3565-3568. https://doi.org/10.3748/wjg.v23.i19.3565

Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM (2011) The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology 141:599-609. https://doi.org/10.1053/j.gastro.2011.04.052

Iughetti L, Lucaccioni L, Fugetto F, Predieri B, Berardi A, Ferrari F (2018) Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides 72:23-29.https://doi.org/10.1016/j.npep.2018.09.005

Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170: 1179-1188.https://doi.org/10.1016/j.neuroscience.2010.08.005

Bagdy G, Kecskemeti V, Riba P, Jakus R (2007) Serotonin and epilepsy. J Neurochem 100: 857-873. https://doi.org/10.1111/j.1471-4159.2006.04277.x

During D (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607-1610. https://doi.org/10.1016/0140-6736(93)90754-5

Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ (2016) Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 125:988-995.https://doi.org/10.1016/j.neuroimage.2015.11.018

Doelken MT, Stefan H, Pauli E, Stadlbauer A, Struffert T, Engelhorn T, Richter G, Ganslandt O, Doerfler A, Hammen T (2008) 1H-MRS profile in MRI positive- versus MRI negative patients with temporal lobe epilepsy. Seizure 17:490-497.https://doi.org/10.1016/j.seizure.2008.01.008

Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, Burnet PWJ (2013) Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63:756-764.https://doi.org/10.1016/j.neuint.2013.10.006

Williams S, Chen L, Savignac HM, Tzortzis G, Anthony DC, Burnet PW (2016) Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse 70:121-124.https://doi.org/10.1002/syn.21880

Bravo JA, Forsythe P, Chew M V., Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108:16050-5. https://doi.org/10.1073/pnas.1102999108

Sperk G, Furtinger S, Schwarzer C, Pirker S (2004) GABA and Its Receptors in Epilepsy Adv Exp Med Biol 548:92-103. doi: 10.1007/978-1-4757-6376-8_7

Jaglin M, Rhimi M, Philippe C, Pons N, Bruneau A, Goustard B, Daugé V, Maguin E, Naudon L, Rabot S (2018) Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Front Neurosci 12:216.https://doi.org/10.3389/fnins.2018.00216

Vazquez E, Barranco A, Ramirez M, Gruart A, Delgado-Garcia JM, Jimenez ML, Buck R, Rueda R (2016) 51. Dietary 2’-Fucosyllactose Enhances Operant Conditioning and Long-Term Potentiation via Gut-Brain Communication through the Vagus Nerve in Rodents. PLoS One 11:e0166070. https://doi.org/10.1371/journal.pone.0166070

Perez-Burgos A, Wang B, Mao Y-K, Mistry B, Neufeld K-AM, Bienenstock J, Kunze W (2013) Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Liver Physiol 304:G211-G220.https://doi.org/10.1152/ajpgi.00128.2012

Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M (2019) Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron 101:246-259.e6.https://doi.org/10.1016/j.neuron.2018.11.018

Lulic D, Ahmadian A, Baaj AA, Benbadis SR, Vale FL (2009) Vagus nerve stimulation. Neurosurg Focus 27:E5. https://doi.org/10.3171/2009.6.FOCUS09126

Bonaz B, Picq C, Sinniger V, Mayol JF, Clarençon D (2013) Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil 25:208-221. https://doi.org/10.1111/nmo.12076

Beekwilder JP, Beems T (2010) Overview of the Clinical Applications of Vagus Nerve Stimulation. J Clin Neurophysiol 27:130-138. https://doi.org/10.1097/WNP.0b013e3181d64d8a

Hornby PJ (2001) II. Excitatory amino acid receptors in the brain-gut axis. Am J Physiol Liver Physiol 280:G1055-G1060. https://doi.org/10.1152/ajpgi.2001.280.6.G1055

De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, Macpherson AJ, Olofsson LE, Bäckhed F (2018) Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA 115:6458-6463.https://doi.org/10.1073/pnas.1720017115

Breit S, Kupferberg A, Rogler G, Hasler G (2018) Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 9:44.https://doi.org/10.3389/fpsyt.2018.00044

Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ (2016) Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends Neurosci 39:763-781.https://doi.org/10.1016/j.tins.2016.09.002

Wang S-Z, Yu Y-J, Adeli K (2020) Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms 8:527.https://doi.org/10.3390/microorganisms8040527

Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 122:107-118. https://doi.org/10.1016/j.cell.2005.05.007

Ivanov II, Frutos R de L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR (2008) Sp6fic Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe 4:337-349.https://doi.org/10.1016/j.chom.2008.09.009

Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses. Immunity 31:677-689. https://doi.org/10.1016/j.immuni.2009.08.020

Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446-450.https://doi.org/10.1038/nature12721

Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota. Science 332:974-977. https://doi.org/10.1126/science.1206095

Lavelle EC, Murphy C, O’Neill LAJ, Creagh EM (2010) The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 3:17-28.https://doi.org/10.1038/mi.2009.124

Qin F, Wu H, Li X, Han J (2020) Correlation between changes in gut flora and serum inflammatory factors in children with noninfectious diarrhea. J Int Med Res 48:300060519896154. https://doi.org/10.1177/0300060519896154

Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM (2011) Cytokines and epilepsy. Seizure 20:249-256.https://doi.org/10.1016/j.seizure.2010.12.005

Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96:70-82.https://doi.org/10.1016/j.neuropharm.2014.10.027

Dyomina AV., Zubareva OE, Smolensky IV., Vasilev DS, Zakharova MV., Kovalenko AA, Schwarz AP, Ischenko AM, Zaitsev AV. (2020) Anakinra Reduces Epileptogenesis, Provides Neuroprotection, and Attenuates Behavioral Impairments in Rats in the Lithium–Pilocarpine Model of Epilepsy. Pharmaceuticals 13:340.https://doi.org/10.3390/ph13110340

Mazarati AM, Pineda E, Shin D, Tio D, Taylor AN, Sankar R (2010) Comorbidity between epilepsy and depression: Role of hippocampal interleukin-1β. Neurobiol Dis 37:461-467.https://doi.org/10.1016/j.nbd.2009.11.001

Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 161:264-276.https://doi.org/10.1016/j.cell.2015.02.047

Spohn SN, Mawe GM (2017) Non-conventional features of peripheral serotonin signalling — the gut and beyond. Nat Rev Gastroenterol Hepatol 14:412-420.https://doi.org/10.1038/nrgastro.2017.51

Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20:14-21.https://doi.org/10.1097/MED.0b013e32835bc703

León-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109:3139-3146.https://doi.org/10.1182/blood-2006-10-052787

Jones LA, Sun EW, Martin AM, Keating DJ (2020) The ever-changing roles of serotonin. Int J Biochem Cell Biol 125:105776. https://doi.org/10.1016/j.biocel.2020.105776

Reigstad CS, Salmonson CE, III JFR, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short‐chain fatty acids on enterochromaffin cells. FASEB J 29:1395-1403.https://doi.org/10.1096/fj.14-259598

Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698-3703. https://doi.org/10.1073/pnas.0812874106

Murugesan A, Rani MRS, Hampson J, Zonjy B, Lacuey N, Faingold CL, Friedman D, Devinsky O, Sainju RK, Schuele S, Diehl B, Nei M, Harper RM, Bateman LM, Richerson G, Lhatoo SD (2018) Serum serotonin levels in patients with epileptic seizures. Epilepsia 59:e91-e97. https://doi.org/10.1111/epi.14198

Young LW, Darios ES, Watts SW (2015) An immunohistochemical analysis of SERT in the blood–brain barrier of the male rat brain. Histochem Cell Biol 144:321-329.https://doi.org/10.1007/s00418-015-1343-1

Van Vliet EA, Aronica E, Gorter JA (2015) Blood–brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol 38:26-34. https://doi.org/10.1016/j.semcdb.2014.10.003

Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI (1993) Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 133:2861-2870.https://doi.org/10.1210/endo.133.6.8243312

Nyberg J (2005) Glucose-Dependent Insulinotropic Polypeptide Is Expressed in Adult Hippocampus and Induces Progenitor Cell Proliferation. J Neurosci 25:1816-1825. https://doi.org/10.1523/JNEUROSCI.4920-04.2005

Figueiredo CP, Pamplona FA, Mazzuco TL, Aguiar AS, Walz R, Prediger RDS (2010) Role of the glucose-dependent insulinotropic polypeptide and its receptor in the central nervous system: therapeutic potential in neurological diseases. Behav Pharmacol 21:394-408. https://doi.org/10.1097/FBP.0b013e32833c8544

Tian M-J, Wang R-F, Hölscher C, Mi R-L, Yuan Z-Y, Li D-F, Xue G-F (2019) The novel GLP-1/GIP dual receptor agonist DA3-CH is neuroprotective in the pilocarpine-induced epileptogenesis rat model. Epilepsy Res 154:97-106. https://doi.org/10.1016/j.eplepsyres.2019.05.008

Lin HV., Frassetto A, Kowalik Jr EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS One 7:e35240. https://doi.org/10.1371/journal.pone.0035240

Fasano C, Rocchetti J, Pietrajtis K, Zander J-F, Manseau F, Sakae DY, Marcus-Sells M, Ramet L, Morel LJ, Carrel D, Dumas S, Bolte S, Bernard V, Vigneault E, Goutagny R, Ahnert-Hilger G, Giros B, Daumas S, Williams S, El Mestikawy S (2017) Regulation of the Hippocampal Network by VGLUT3-Positive CCK-GABAergic Basket Cells. Front Cell Neurosci 11:11:140.https://doi.org/10.3389/fncel.2017.00140

Sun C, Sun J, Erisir A, Kapur J (2014) Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiol Dis 62:44-55.https://doi.org/10.1016/j.nbd.2013.08.018

Woods SE, Leonard MR, Hayden JA, Brophy MB, Bernert KR, Lavoie B, Muthupalani S, Whary MT, Mawe GM, Nolan EM, Carey MC, Fox JG (2015) Impaired cholecystokinin-induced gallbladder emptying incriminated in spontaneous “black” pigment gallstone formation in germfree Swiss Webster mice. Am J Physiol Liver Physiol 308: G335-G349. https://doi.org/10.1152/ajpgi.00314.2014

Lee H-K, Zhang L, Smith MD, White HS, Bulaj G (2009) Glycosylated Neurotensin Analogues Exhibit Sub-picomolar Anticonvulsant Potency in a Pharmacoresistant Model of Epilepsy. ChemMedChem 4:400-405. https://doi.org/10.1002/cmdc.200800421

Corvino V, Marchese E, Giannetti S, Lattanzi W, Bonvissuto D, Biamonte F, Mongiovì AM, Michetti F, Geloso MC (2012) The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem 122:415-426.https://doi.org/10.1111/j.1471-4159.2012.07770.x

Li L, Deng J, Liu C, Luo H, Guan Y, Zhou J, Qi X, Li T, Xu ZD, Luan G-M (2016) Altered expression of neuropeptide Y receptors caused by focal cortical dysplasia in human intractable epilepsy. Oncotarget 7:15329-15338. https://doi.org/10.18632/oncotarget.7855

Salcedo I, Tweedie D, Li Y, Greig NH (2012) Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 166:1586-1599. https://doi.org/10.1111/j.1476-5381.2012.01971.x

During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M, Banks WA, Drucker DJ, Haile CN (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9:1173-1179. https://doi.org/10.1038/nm919

Simon M-C, Strassburger K, Nowotny B, Kolb H, Nowotny P, Burkart V, Zivehe F, Hwang J-H, Stehle P, Pacini G, Hartmann B, Holst JJ, MacKenzie C, Bindels LB, Martinez I, Walter J, Henrich B, Schloot NC, Roden M (2015) Intake of Lactobacillus reuteri Improves Incretin and Insulin Secretion in Glucose-Tolerant Humans: A Proof of Concept. Diabetes Care 38:1827-1834. https://doi.org/10.2337/dc14-2690

Overduin J, Schoterman MHC, Calame W, Schonewille AJ, Ten Bruggencate SJM (2013) Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br J Nutr 109:1338-1348. https://doi.org/10.1017/S0007114512003066

Kastin AJ, Akerstrom V, Pan W (2002) Interactions of Glucagon-Like Peptide-1 (GLP-1) with the Blood-Brain Barrier. J Mol Neurosci 18:7-14. https://doi.org/10.1385/JMN:18:1-2:07

Banks WA, Wustrow DJ, Cody WL, Duff Davis M, Kastin AJ (1995) Permeability of the blood-brain barrier to the neurotensin8–13 analog NT1. Brain Res 695:59-63. https://doi.org/10.1016/0006-8993(95)00836-F

Krieger J-P, Langhans W, Lee SJ (2015) Vagal mediation of GLP-1’s effects on food intake and glycemia. Physiol Behav 152:372-380. https://doi.org/10.1016/j.physbeh.2015.06.001

Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M (2005) The Role of the Vagal Nerve in Peripheral PYY3–36-Induced Feeding Reduction in Rats. Endocrinology 146:2369-2375. https://doi.org/10.1210/en.2004-1266

Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767-16772. https://doi.org/10.1073/pnas.0808567105

Bindels LB, Dewulf EM, Delzenne NM (2013) GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 34:226-232. https://doi.org/10.1016/j.tips.2013.02.002

Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F, Blottiere HM (2018) SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 8:74. https://doi.org/10.1038/s41598-017-18259-0

Taher TR, Salzberg M, Morris MJ, Rees S, O’Brien TJ (2005) Chronic Low-Dose Corticosterone Supplementation Enhances Acquired Epileptogenesis in the Rat Amygdala Kindling Model of TLE. Neuropsychopharmacology 30:1610-1616. https://doi.org/10.1038/sj.npp.1300709

Karst H, Bosma A, Hendriksen E, Kamphuis W, de Kloet ER, Joëls M (1997) Effect of Adrenalectomy in Kindled Rats. Neuroendocrinology 66:348-359. https://doi.org/10.1159/000127258

De Weerth C (2017) Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev 83:458-471. https://doi.org/10.1016/j.neubiorev.2017.09.016

Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, Rabot S (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207-217. https://doi.org/10.1016/j.psyneuen.2014.01.014

Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ (2015) Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl) 232:1793-1801. https://doi.org/10.1007/s00213-014-3810-0

Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson J-F, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel J-M (2011) Assessment of psychotropic-like properties of a probiotic formulation ( Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755-764. https://doi.org/10.1017/S0007114510004319

Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, Murphy E, Cryan JF, Dinan TG, Clarke G (2016) Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 6: e939. https://doi.org/10.1038/tp.2016.191

Tian P, O’Riordan KJ, Lee Y, Wang G, Zhao J, Zhang H, Cryan JF, Chen W (2020) Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress 12:100216. https://doi.org/10.1016/j.ynstr.2020.100216

Van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF (2018) Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 596:4923-4944. https://doi.org/10.1113/JP276431

Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 25:397-407. https://doi.org/10.1016/j.bbi.2010.10.023

Bailey MT, Dowd SE, Parry NMA, Galley JD, Schauer DB, Lyte M (2010) Stressor Exposure Disrupts Commensal Microbial Populations in the Intestines and Leads to Increased Colonization by Citrobacter rodentium. Infect Immun 78:1509-1519. https://doi.org/10.1128/IAI.00862-09

Golubeva A V., Crampton S, Desbonnet L, Edge D, O’Sullivan O, Lomasney KW, Zhdanov A V., Crispie F, Moloney RD, Borre YE, Cotter PD, Hyland NP, O’Halloran KD, Dinan TG, O’Keeffe GW, Cryan JF (2015) Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 60:58-74. https://doi.org/10.1016/j.psyneuen.2015.06.002

Russo R, Cristiano C, Avagliano C, De Caro C, La Rana G, Raso GM, Canani RB, Meli R, Calignano A (2018) Gut-brain Axis: Role of Lipids in the Regulation of Inflammation, Pain and CNS Diseases. Curr Med Chem 25:3930-3952. https://doi.org/10.2174/0929867324666170216113756

Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut Microbiota Composition and Activity in Relation to Host Metabolic Phenotype and Disease Risk. Cell Metab 16:559-564. https://doi.org/10.1016/j.cmet.2012.10.007

Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189-200. https://doi.org/10.1080/19490976.2015.1134082

Goswami C, Iwasaki Y, Yada T (2018) Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J Nutr Biochem 57:130-135. https://doi.org/10.1016/j.jnutbio.2018.03.009

Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, Carling D, Swann JR, Gibson G, Viardot A, Morrison D, Louise Thomas E, Bell JD (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611. https://doi.org/10.1038/ncomms4611

Oh HYP, Visvalingam V, Wahli W (2019) The PPAR–microbiota–metabolic organ trilogy to fine‐tune physiology. FASEB J 33:9706-9730. https://doi.org/10.1096/fj.201802681RR

Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC (2017) PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev 92:2046-2069. https://doi.org/10.1111/brv.12320

Hong F, Pan S, Guo Y, Xu P, Zhai Y (2019) PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules 24:2545. https://doi.org/10.3390/molecules24142545

Cullingford TE (2004) The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders. Prostaglandins, Leukot Essent Fat Acids 70:253-264. https://doi.org/10.1016/j.plefa.2003.09.008

Berger J, Moller DE (2002) The Mechanisms of Action of PPARs. Annu Rev Med 53:409-435. https://doi.org/10.1146/annurev.med.53.082901.104018

Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr J 13:17. https://doi.org/10.1186/1475-2891-13-17

Moreno S, Farioli-Vecchioli S, Cerù M. (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid x receptors in the adult rat CNS. Neuroscience 123:131-145. https://doi.org/10.1016/j.neuroscience.2003.08.064

Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA (2016) Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 6:27618. https://doi.org/10.1038/srep27618

Xing GQ, Zhang LX, Zhang L, Heynen T, Yoshikawa T, Smith M, Weiss S, Deterawadleigh S (1995) Rat PPARδ Contains a CGG Triplet Repeat and Is Prominently Expressed in the Thalamic Nuclei. Biochem Biophys Res Commun 217:1015-1025. https://doi.org/10.1006/bbrc.1995.2871

Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354-366. https://doi.org/10.1210/endo.137.1.8536636

Krémarik-Bouillaud P, Schohn H, Dauça M (2000) Regional distribution of PPARβ in the cerebellum of the rat. J Chem Neuroanat 19:225-232. https://doi.org/10.1016/S0891-0618(00)00065-X

Woods JW, Tanen M, Figueroa DJ, Biswas C, Zycband E, Moller DE, Austin CP, Berger JP (2003) Localization of PPARδ in murine central nervous system: expression in oligodendrocytes and neurons. Brain Res 975:10-21. https://doi.org/10.1016/S0006-8993(03)02515-0

Granneman J, Skoff R, Yang X (1998) Member of the peroxisome proliferator-activated receptor family of transcription factors is differentially expressed by oligodendrocytes. J Neurosci Res 51:563-573. https://doi.org/10.1002/(SICI)1097-4547(19980301)51:5<563::AID-JNR3>3.0.CO;2-D

Bernardo A, Ajmone-Cat MA, Levi G, Minghetti L (2003) 15-Deoxy-Δ12,14-prostaglandin J2 regulates the functional state and the survival of microglial cells through multiple molecular mechanisms. J Neurochem 87:742-751. https://doi.org/10.1046/j.1471-4159.2003.02045.x

Cristiano L, Bernardo A, Cerù MP (2001) Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes. J Neurocytol 30:671-683. https://doi.org/10.1023/A:1016525716209

Cullingford TE, Bhakoo K, Peuchen S, Dolphin CT, Patel R, Clark JB (2002) Distribution of mRNAs Encoding the Peroxisome Proliferator-Activated Receptor α, β, and γ and the Retinoid X Receptor α, β, and γ in Rat Central Nervous System. J Neurochem 70:1366-375. https://doi.org/10.1046/j.1471-4159.1998.70041366.x

Hankir MK, Seyfried F, Hintschich CA, Diep T-A, Kleberg K, Kranz M, Deuther-Conrad W, Tellez LA, Rullmann M, Patt M, Teichert J, Hesse S, Sabri O, Brust P, Hansen HS, de Araujo IE, Krügel U, Fenske WK (2017) Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats. Cell Metab 25:335-344. https://doi.org/10.1016/j.cmet.2016.12.006

Liu C, Bookout AL, Lee S, Sun K, Jia L, Lee C, Udit S, Deng Y, Scherer PE, Mangelsdorf DJ, Gautron L, Elmquist JK (2014) PPARγ in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis. Cell Metab 19:722-730. https://doi.org/10.1016/j.cmet.2014.01.021

Ying Jiang Y, Li L, Liu B, Zhang Y, Chen Q, Changqing Li C (2015) PPARγ Upregulation Induced by Vagus Nerve Stimulation Exerts Anti-Inflammatory Effect in Cerebral Ischemia/Reperfusion Rats. Med Sci Monit 21:268-275. https://doi.org/10.12659/MSM.891407

Daoudi M, Hennuyer N, Borland MG, Touche V, Duhem C, Gross B, Caiazzo R, Kerr–Conte J, Pattou F, Peters JM, Staels B, Lestavel S (2011) PPARβ/δ Activation Induces Enteroendocrine L Cell GLP-1 Production. Gastroenterology 140:1564-1574. https://doi.org/10.1053/j.gastro.2011.01.045

Liu YL, Shi JX, Lu J, Che ZQ, Zhu HL, Hou YQ, Yin YL, Zhao SJ, Ding BY, Liu HM (2010) Up-regulated expression of peroxisome proliferator-activated receptor γ in the hypothalamic–pituitary–adrenal axis of weaned pigs after Escherichia coli lipopolysaccharide challenge. Vet J 184:230-235. https://doi.org/10.1016/j.tvjl.2009.02.010

Villapol S (2018) Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell Mol Neurobiol 38:121-132. https://doi.org/10.1007/s10571-017-0554-5

Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammat15: 144. https://doi.org/10.1186/s12974-018-1192-7

Crisafulli C, Cuzzocrea S (2009) he role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha (PPAR-α) in the regulation of inflammation in macrophages. Shock 32:62-73. https://doi.org/10.1097/SHK.0b013e31818bbad6

Ricote M, Glass C (2007) PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta - Mol Cell Biol Lipids 1771:926-935. https://doi.org/10.1016/j.bbalip.2007.02.013

Xu J, Storer PD, Chavis JA, Racke MK, Drew PD (2005) Agonists for the peroxisome proliferator-activated receptor-α and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res 81:403-411. https://doi.org/10.1002/jnr.20518

Xu J, Chavis JA, Racke MK, Drew PD (2006) Peroxisome proliferator-activated receptor-α and retinoid X receptor agonists inhibit inflammatory responses of astrocytes. J Neuroimmunol 176:95-105. https://doi.org/10.1016/j.jneuroim.2006.04.019

Daynes RA, Jones DC (2002) Emerging roles of PPARS in inflammation and immunity. Nat Rev Immunol 2:748-759. https://doi.org/10.1038/nri912

Stienstra R, Mandard S, Tan NS, Wahli W, Trautwein C, Richardson TA, Lichtenauer-Kaligis E, Kersten S, Müller M (2007) The Interleukin-1 receptor antagonist is a direct target gene of PPARα in liver. J Hepatol 46:869-877. https://doi.org/10.1016/j.jhep.2006.11.019

Zhao C, Jiang M, Zhang L, Hu Y, Hu Z, Zhang M, Qi J, Su A, Lou N, Xian X, Zhang J, Li W, Zhang M (2019) Peroxisome proliferator‐activated receptor gamma participates in the acquisition of brain ischemic tolerance induced by ischemic preconditioning via glial glutamate transporter 1 in vivo and in vitro. J Neurochem 151:608-625. https://doi.org/10.1111/jnc.14824

Adabi Mohazab R, Javadi-Paydar M, Delfan B, Dehpour AR (2012) Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Res 101:28-35. https://doi.org/10.1016/j.eplepsyres.2012.02.015

Hong S, Xin Y, HaiQin W, GuiLian Z, Ru Z, ShuQin Z, HuQing W, Li Y, Ning B, YongNan L (2013) The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 63:405-412. https://doi.org/10.1016/j.neuint.2013.07.010

Hong S, Xin Y, HaiQin W, GuiLian Z, Ru Z, ShuQin Z, HuQing W, Li Y, Yun D (2012) The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci 33:559-566. https://doi.org/10.1007/s10072-011-0774-2

Sun H, Huang Y, Yu X, Li Y, Yang J, Li R, Deng Y, Zhao G (2008) Peroxisome proliferator‐activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine‐induced status epilepticus in rats. Int J Dev Neurosci 26:505-515. https://doi.org/10.1016/j.ijdevneu.2008.01.009

Peng J, Wang K, Xiang W, Li Y, Hao Y, Guan Y (2019) Rosiglitazone polarizes microglia and protects against pilocarpine‐induced status epilepticus. CNS Neurosci Ther 25:1363-1372. https://doi.org/10.1111/cns.13265

Wong S-B, Cheng S-J, Hung W-C, Lee W-T, Min M-Y (2015) Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy. PLoS One 10: e0144806. https://doi.org/10.1371/journal.pone.0144806

Saha L, Bhandari S, Bhatia A, Banerjee D, Chakrabarti A (2014) Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model. J Epilepsy Res 4:45-54. https://doi.org/10.14581/jer.14011

Porta N, Vallée L, Lecointe C, Bouchaert E, Staels B, Bordet R, Auvin S (2009) Fenofibrate, a peroxisome proliferator-activated receptor-α agonist, exerts anticonvulsive properties. Epilepsia 50:943-948. https://doi.org/10.1111/j.1528-1167.2008.01901.x

Łukawski K, Gryta P, Łuszczki J, Czuczwar SJ (2016) Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin Drug Discov 11:369-382.https://doi.org/10.1517/17460441.2016.1154840