СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВЫЯВЛЕНИЯ МИКРОГЛИИ У МЛЕКОПИТАЮЩИХ И ЧЕЛОВЕКА С ИСПОЛЬЗОВАНИЕМ МАРКИРОВАНИЯ ПУРИНЕРГИЧЕСКИХ РЕЦЕПТОРОВ P2Y12
PDF

Ключевые слова

микроглия
пуринергические рецепторы
иммуногистохимия
конфокальная микроскопия
человек
млекопитающие

Аннотация

Проблема выбора адекватного метода выявления микроглии актуальна для современных нейрофизиологических и междисциплинарных исследований в связи с отсутствием универсальных подходов, позволяющих визуализировать эту популяцию клеток в препаратах головного мозга человека и лабораторных животных. В настоящем исследовании изучалась возможность использования пуринергического рецептора P2Y12 в качестве маркера для сравнительного анализа микроглии у человека и нескольких неродственных видов животных (кролик, крыса, мышь, суслик). Для исследования применялись антитела к рекомбинантному пептиду, соответствующему 303—342 аминокислотам P2Y12 рецептора человека. Показано, что наилучшие результаты выявления микроглии были характерны для человека, кролика и крысы. У суслика и мыши, помимо выявляемой микроглии, обнаруживалась неспецифическая реакция со стороны других клеток, отрицательное влияние которой на качество получаемых изображений можно уменьшить, используя средства конфокальной микроскопии. Во всех исследованных случаях отмечалось отсутствие иммунопозитивных макрофагов и клеток амебоидной микроглии, что свидетельствует о перспективности использования P2Y12 как высокоселективного маркера покоящейся микроглии. В рамках настоящего исследования впервые была проведена визуализация микроглии головного мозга кролика и суслика с использованием антител против пуринергического рецептора P2Y12.

https://doi.org/10.31857/S0044452921050028
PDF

Литература

Greer K, Basso EKG, Kelly C, Cash A, Kowalski E, Cerna S, Ocampo CT, Wang X, Theus MH (2020) Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBI-induced learning and memory impairments. Sci Rep 10(1): 15374. http://doi.org/10.1038/s41598-020-72380-1.

Nazarian S, Abdolmaleki Z, Torfeh A, Shirazi Beheshtiha SH (2020) Mesenchymal stem cells with modafinil (gold nanoparticles) significantly improves neurological deficits in rats after middle cerebral artery occlusion. Exp Brain Res 238(11): 2589-2601. http://doi.org/10.1007/s00221-020-05913-9.

Deb BK, Chakraborty P, Gopurappilly R, Hasan G (2020) SEPT7 regulates Ca2+ entry through Orai channels in human neural progenitor cells and neurons. Cell Calcium 90: 102252. http://doi.org/10.1016/j.ceca.2020.102252.

Bielefeld P, Abbink MR, Davidson AR, Reijner N, Abiega O, Lucassen PJ, Korosi A, Fitzsimons CP (2021) Early life stress decreases cell proliferation and the number of putative adult neural stem cells in the adult hypothalamus. Stress 24(2): 189-195. http://doi.org/10.1080/10253890.2021.1879787.

Lorenzen K, Mathy NW, Whiteford ER, Eischeid A, Chen J, Behrens M, Chen XM, Shibata A (2021) Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT intracellular signaling in vitro. Mol Biol Rep 48(1): 563-584. http://doi.org/10.1007/s11033-020-06092-0.

Ping S, Qiu X, Kyle M, Zhao LR (2021) Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis 12(1): 72-92. http://doi.org/10.14336/AD.2020.0406.

Wei H, Zhou W, Hu G, Shi C (2021) Induction of mesenchymal stem cell‑like transformation in rat primary glial cells using hypoxia, mild hypothermia and growth factors. Mol Med Rep 23(2): 1. http://doi.org/10.3892/mmr.2020.11760.

Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM (2012) Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 343(3): 596-607. https://doi.org/10.1124/jpet.112.198341.

Samoilov M, Churilova A, Gluschenko T, Vetrovoy O, Dyuzhikova N, Rybnikova E (2016) Acetylation of histones in neocortex and hippocampus of rats exposed to different modes of hypobaric hypoxia: Implications for brain hypoxic injury and tolerance. Acta Histochem 118(2): 80-89. https://doi.org/10.1016/j.acthis.2015.11.008.

Daneshtalab N, Doré JJ, Smeda JS (2010) Troubleshooting tissue specificity and antibody selection: Procedures in immunohistochemical studies. J Pharmacol Toxicol Methods 61(2): 127–135. https://doi.org/10.1016/j.vascn.2009.12.002.

Weller MG (2016) Quality Issues of Research Antibodies. Analytical chemistry insights 11: 21–27. https://doi.org/10.4137/ACI.S31614.

Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D (2010) Antibody validation. BioTechniques 48(3): 197–209. https://doi.org/10.2144/000113382

Gown AM (2016) Diagnostic Immunohistochemistry: What Can Go Wrong and How to Prevent. It. Archives of pathology & laboratory medicine 140(9): 893–898. https://doi.org/10.5858/arpa.2016-0119-RA.

Holmseth S, Zhou Y, Follin-Arbelet VV, Lehre KP, Bergles D E, Danbolt NC (2012) Specificity controls for immunocytochemistry: the antigen preadsorption test can lead to inaccurate assessment of antibody specificity. J Histochem Cytochem 60(3): 174–187. https://doi.org/10.1369/0022155411434828.

Nuovo G (2016) False-positive results in diagnostic immunohistochemistry are related to horseradish peroxidase conjugates in commercially available assays. Ann Diagnost Pathol 25: 54–59. https://doi.org/10.1016/j.anndiagpath.2016.09.010.

Korzhevskii DÉ, Otellin VA, Grigorev IP, Petrova ES, Gilerovich EG, Zinkova NN (2008) Immunocytochemical detection of neuronal NO synthase in rat brain cells. Neurosci Behav Physiol 38(8): 835-838. https://doi.org/10.1007/s11055-008-9063-9.

Ward JM, Rehg JE (2014) Rodent Immunohistochemistry: Pitfalls and Troubleshooting. Veterinary Pathology 51(1): 88–101. https://doi.org/10.1177/0300985813503571.

Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene Iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224(3): 855-862. https://doi.org/10.1006/bbrc.1996.1112.

Korzhevskii DE, Kirik OV, Sukhorukova EG (2015) Immunocytochemistry of Microglial Cells. In: Merighi A., Lossi L. (eds) Immunocytochemistry and Related Techniques. Neuromethods. Humana Press. New York. 101: 209-224. https://doi.org/10.1007/978-1-4939-2313-7_12

Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44(3): 242-250. https://doi.org/10.1002/glia.10293.

Mildner A, Huang H, Radke J, Stenzel W, Priller J (2017) P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65(2): 375-387. https://doi.org/10.1002/glia.23097.

Koizumi S, Ohsawa K, Inoue K, Kohsaka S (2013) Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia 61(1): 47-54. http://doi.org/10.1002/glia.22358.

Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12): 1512-1519. https://doi.org/10.1038/nn1805.

Yu T, Zhang X, Shi H, Tian J, Sun L, Hu X, Cui W, Du D (2019) P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death Dis 10(3): 165. https://doi.org/10.1038/s41419-019-1425-4.

Chen Z, Zhong D, Li G (2019) The role of microglia in viral encephalitis: a review. J Neuroinflammation 16(1): 76. https://doi.org/10.1186/s12974-019-1443-2.

Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD, Ujvári K, Környei Z, Tóth K, Szabadits E, Sperlágh B, Baranyi M, Csiba L, Hortobágyi T, Maglóczky Z, Martinecz B, Szabó G, Erdélyi F, Szipőcs R, Tamkun MM, Gesierich B, Duering M, Katona I, Liesz A, Tamás G, Dénes Á (2020) Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367(6477): 528-537. https://doi.org/10.1126/science.aax6752.

Tuan LH, Lee LJ (2019) Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis 130: 104517. https://doi.org/10.1016/j.nbd.2019.104517.

Peng J, Liu Y, Umpierre AD, Xie M, Tian DS, Richardson JR, Wu LJ (2019) Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol Brain 12(1): 71. https://doi.org/10.1186/s13041-019-0492-x.

Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP (2015) Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur. J Histochem 59(3): 233-237. https://doi.org/10.4081/ejh.2015.2530.

O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2015) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1): D733–D745. https://doi.org/10.1093/nar/gkv1189.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215(3): 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5): 1792-1797. https://doi.org/10.1093/nar/gkh340.29.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096.

Bishop DP, Cole N, Zhang T, Doble PA, Hare DJ (2018) A guide to integrating immunohistochemistry and chemical imaging. Chem Soc Rev 47(11): 3770-3787. https://doi.org/10.1039/c7cs00610a.

Ladner RC (2007) Mapping the epitopes of antibodies. Biotechnol. Genet Eng Rev 24: 1-30. https://doi.org/10.1080/02648725.2007.10648092.

Fritschy JM (2008) Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur J Neurosci 28(12): 2365–2370. https://doi.org/10.1111/j.1460-9568.2008.06552.x.

Ramírez AI, de Hoz R, Fernández-Albarral JA, Salobrar-Garcia E, Rojas B, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Pérez MP, Vidal-Sanz M, Triviño A, Ramírez JM, Salazar JJ (2020) Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma. Sci Rep 10(1): 4890. https://doi.org/10.1038/s41598-020-61848-9.