ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ КАЛЬРЕТИНИН-ИММУНОПОЗИТИВНЫХ НЕЙРОНОВ В ПОЯСНИЧНОМ ОТДЕЛЕ СПИННОГО МОЗГА КОШКИ (FELIS CATUS)
PDF

Ключевые слова

кальций-связывающий белок
кальретинин
спинной мозг
картирование
кошка

Аннотация

Многообразие нейронных сетей ЦНС определяется, в том числе, гетерогенностью популяций нейронов в её составе. В качестве маркеров нейронов разных морфотипов могут выступать кальций-связывающие белки; среди которых одним из наиболее распространенных является кальретинин. В настоящей работе с помощью непрямого иммуногистохимического метода были маркированы кальретинин-иммунопозитивные нейронные популяции поясничных сегментов спинного мозга кошки. В исследовании было выявлено 19 морфотипов нейронов, имеющих строгую посегментную и ламинарную локализацию, сделана попытка сопоставления предполагаемой функции этих нейронов с данными литературы. Среди выявленных морфотипов, три локализуются в пластине I и соответствуют нейронам, участвующим в передаче болевой и температурной информации. В пластине II обнаружены клетки одного морфотипа, на которых сходятся болевые афференты. Три типа пучковых нейронов, передающих информацию от периферических механо- и ноцицепторов в супраспинальные структуры, представлены в пластинах III-IV. Пластины V-VI характеризуются функционально разными нейронами пяти морфотипов: интернейронами ядер Кларка и аналогичной зоны каудальных поясничных сегментов, на которые сходится проприоцептивная информация; нейронами на латеральной границе между белым и серым веществом, отвечающими на болевые и тактильные сигналы и двумя типами неупорядоченно распределенных вставочных, пучковых или проприоспинальных клеток, получяющих разнородные афферентные сигналы от мышечных веретен. В пластинах VII-VIII выявлено два типа симпатических преганглионарных нейронов (в интермедиолатеральном и интеркалированном ядрах), интернейроны Реншоу и три типа разноразмерных дисперсно распределенных мультиполярных клеток, определение функции для которых является затруднительным. В пластине IX, представленной мотонейронными пулами, иммунопозитивных нейронов не обнаружено. Вокруг центрального канала в пластине X локализованы редкие нейроны, функция для которых, в силу малого числа их морфологических признаков, не определена.

https://doi.org/10.31857/S0044452921040082
PDF

Литература

Islam MdS (2020) Calcium Signaling: From Basic to Bedside. In: Islam MdS (ed) Calcium Signaling. Springer International Publishing, Cham, pp 1–6.

Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cellular and Molecular Life Sciences 66:275–300. https://doi.org/10.1007/s00018-008-8564-6

Antal M, Freund TF, Polgár E (1990) Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: A light and electron microscopic study. Journal of Comparative Neurology 295:467–484.

Walters MC, Sonner MJ, Myers JH, Ladle DR (2019) Calcium imaging of parvalbumin neurons in the dorsal root ganglia. eNeuro 6:. https://doi.org/10.1523/ENEURO.0349-18.2019

Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Research Reviews 19:163–179. https://doi.org/10.1016/0165-0173(94)90010-8

Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nature Neuroscience 13:1233–1239. https://doi.org/10.1038/nn.2637

Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, Todd AJ, Goulding M (2005) Postnatal phenotype and localization of spinal cord V1 derived interneurons. Journal of Comparative Neurology 493:177–192. https://doi.org/10.1002/cne.20711

Carr PA, Alvarez FJ, Leman EA, W. Fyffe RE (1998) Calbindin D28k expression in immunohistochemically identified Renshaw cells. NeuroReport 9:2657–2661. https://doi.org/10.1097/00001756-199808030-00043

Merkulyeva N, Veshchitskii A, Makarov F, Gerasimenko Y, Musienko P (2016) Distribution of 28 kDa calbindin-Immunopositive neurons in the cat spinal cord. Frontiers in Neuroanatomy 9:1–13. https://doi.org/10.3389/fnana.2015.00166

Grkovic I, Anderson CR (1997) Calbindin D28K-immunoreactivity identifies distinct subpopulations of sympathetic pre- and postganglionic neurons in the rat. Journal of Comparative Neurology 386:245–259. https://doi.org/10.1002/(SICI)1096-9861(19970922)386:2<245::AID-CNE6>3.0.CO;2-1

Strack S, Wadzinski BE, Ebner FF (1996) Localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the hindbrain and spinal cord of the rat. Journal of Comparative Neurology 375:66–76. https://doi.org/10.1002/(SICI)1096-9861(19961104)375:1<66::AID-CNE4>3.0.CO;2-M

Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nature Reviews Neuroscience 7:687–696. https://doi.org/10.1038/nrn1954

Winsky L, Kuźnicki J (1995) Distribution of calretinin, calbindin D28k, and parvalbumin in subcellular fractions of rat cerebellum: effects of calcium. Journal of Neurochemistry 65:381–388. https://doi.org/10.1046/j.1471-4159.1995.65010381.x

Münkle MC, Waldvogel HJ, Faull RLM (2000) The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Journal of Chemical Neuroanatomy 19:155–173. https://doi.org/10.1016/S0891-0618(00)00060-0

Ren K, Ruda MA, Jacobowitz DM (1993) Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Brain Research Bulletin 31:13–22. https://doi.org/10.1016/0361-9230(93)90004-U

Anelli R, Heckman CJ (2005) The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. Journal of Neurocytology 34:369–385. https://doi.org/10.1007/s11068-006-8724-2

Camp AJ, Wijesinghe R (2009) Calretinin: Modulator of neuronal excitability. The International Journal of Biochemistry & Cell Biology 41:2118–2121. https://doi.org/10.1016/j.biocel.2009.05.007

Gerasimenko Y, Roy RR, Edgerton VR (2008) Epidural stimulation: Comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Experimental Neurology 209:417–425. https://doi.org/10.1016/j.expneurol.2007.07.015

Musienko P, Courtine G, Tibbs JE, Kilimnik V, Savochin A, Garfinkel A, Roy RR, Edgerton VR, Gerasimenko Y (2012) Somatosensory control of balance during locomotion in decerebrated cat. Journal of Neurophysiology 107:2072–2082. https://doi.org/10.1152/jn.00730.2011

Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJK, Burdick JW, Roy RR (2008) Training locomotor networks. Brain Research Reviews 57:241–254. https://doi.org/10.1016/j.brainresrev.2007.09.002

Merkulyeva N, Lyakhovetskii V, Veshchitskii A, Bazhenova E, Gorskii O, Musienko P (2019) Activation of the spinal neuronal network responsible for visceral control during locomotion. Experimental Neurology 320:112986. https://doi.org/10.1016/j.expneurol.2019.112986

Fairless R, Williams SK, Diem R (2019) Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. International Journal of Molecular Sciences 20:2146. https://doi.org/10.3390/ijms20092146

Morrison BM, Janssen WGM, Gordon JW, Morrison JH (1998) Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. Journal of Comparative Neurology 395:523–534. https://doi.org/10.1002/(SICI)1096-9861(19980615)395:4<523::AID-CNE8>3.0.CO;2-3

Merkulyeva N, Veshchitskii A, Gorsky O, Pavlova N, Zelenin PV, Gerasimenko Y, Deliagina TG, Musienko P (2018) Distribution of spinal neuronal networks controlling forward and backward locomotion. The Journal of Neuroscience 38:4695–4707. https://doi.org/10.1523/JNEUROSCI.2951-17.2018

Merkulyeva N, Lyakhovetskii V, Veshchitskii A, Gorskii O, Musienko P (2021) Rostrocaudal distribution of the C-Fos-immunopositive spinal network defined by muscle activity during locomotion. Brain Sciences 11:69. https://doi.org/10.3390/brainsci11010069

Zhang M, Broman J (1998) Cervicothalamic tract termination: a reexamination and comparison with the distribution of monoclonal antibody Cat-301 immunoreactivity in the cat. Anatomy and Embryology 198:451–472. https://doi.org/10.1007/s004290050196

Shkorbatova PY, Lyakhovetskii VA, Merkulyeva NS, Veshchitskii AA, Bazhenova EY, Laurens J, Pavlova NV, Musienko PE (2019) Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae. The Anatomical Record 302:1628–1637. https://doi.org/10.1002/ar.24054

Eldred WD, Zucker C, Karten HJ, Yazulla S (1983) Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. Journal of Histochemistry and Cytochemistry 31:285–292. https://doi.org/10.1177/31.2.6339606

Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. Journal of Cell Biology 105:1343–1353. https://doi.org/10.1083/jcb.105.3.1343

Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell and Tissue Research 271:181–208. https://doi.org/10.1007/BF00318606

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. Journal of Comparative Neurology 100:297–379. https://doi.org/10.1002/cne.901000205

Heise C, Kayalioglu G (2009) Cytoarchitecture of the Spinal Cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The Spinal Cord. Academic Press, San Diego, pp 64–93

Craig AD, Zhang ET, Blomqvist A (2002) Association of spinothalamic lamina I neurons and their ascending axons with calbindin-immunoreactivity in monkey and human. PAIN 97:105–115. https://doi.org/10.1016/S0304-3959(02)00009-X

Han Z-S, Zhang E-T, Craig AD (1998) Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nature Neuroscience 1:218–225. https://doi.org/10.1038/665

Lima D, Avelino A, Coimbra A (1993) Morphological characterization of marginal (Lamina I) neurons immunoreactive for substance P, enkephalin, dynorphin and gamma-aminobutyric acid in the rat spinal cord. Journal of Chemical Neuroanatomy 6:43–52. https://doi.org/10.1016/0891-0618(93)90006-P

Grudt TJ, Perl ER (2002) Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. The Journal of Physiology 540:189–207. https://doi.org/10.1113/jphysiol.2001.012890

Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ (2010) Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 151:475–488. https://doi.org/10.1016/j.pain.2010.08.008

Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nature Reviews Neuroscience 11:823–836. https://doi.org/10.1038/nrn2947

Smith KM, Browne TJ, Davis OC, Coyle A, Boyle KA, Watanabe M, Dickinson SA, Iredale JA, Gradwell MA, Jobling P, Callister RJ, Dayas CV, Hughes DI, Graham BA (2019) Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn. eLife 8:e49190. https://doi.org/10.7554/eLife.49190

Peirs C, Williams S-PG, Zhao X, Arokiaraj CM, Ferreira DW, Noh M, Smith KM, Halder P, Corrigan KA, Gedeon JY, Lee SJ, Gatto G, Chi D, Ross SE, Goulding M, Seal RP (2021) Mechanical allodynia circuitry in the dorsal horn is defined by the nature of the Injury. Neuron 109:73-90.e7. https://doi.org/10.1016/j.neuron.2020.10.027

Gatto G, Bourane S, Ren X, Di Costanzo S, Fenton PK, Halder P, Seal RP, Goulding MD (2021) A functional topographic map for spinal sensorimotor reflexes. Neuron 109:91-104.e5. https://doi.org/10.1016/j.neuron.2020.10.003

Willis WD, Coggeshall RE (2004) Functional Organization of Dorsal Horn Interneurons. In: Willis WD, Coggeshall RE (eds) Sensory Mechanisms of the Spinal Cord: Volume 1 Primary Afferent Neurons and the Spinal Dorsal Horn. Springer US, Boston, MA, pp 271–388. https://doi.org/10.1007/978-1-4615-0035-3_7

Al‐Khater KM, Todd AJ (2009) Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. Journal of Comparative Neurology 515:629–646. https://doi.org/10.1002/cne.22081

Abraira VE, Kuehn ED, Chirila AM, Springel MW, Toliver AA, Zimmerman AL, Orefice LL, Boyle KA, Bai L, Song BJ, Bashista KA, O’Neill TG, Zhuo J, Tsan C, Hoynoski J, Rutlin M, Kus L, Niederkofler V, Watanabe M, Dymecki SM, Nelson SB, Heintz N, Hughes DI, Ginty DD (2017) The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell 168:295-310.e19. https://doi.org/10.1016/j.cell.2016.12.010

Maxwell DJ, Fyffe REW, Rethelyi M (1983) Morphological properties of physiologically characterized lamina III neurones in the cat spinal cord. Neuroscience 10:1–22. https://doi.org/10.1016/0306-4522(83)90076-3

Naim M, Spike RC, Watt C, Shehab SAS, Todd AJ (1997) Cells in laminae III and IV of the rat spinal cord that possess the Neurokinin-1 receptor and have dorsally directed dendrites receive a major synaptic input from tachykinin-containing primary afferents. Journal of Neuroscience 17:5536–5548. https://doi.org/10.1523/JNEUROSCI.17-14-05536.1997

Larsson M (2017) Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neuroscience Letters 638:96–101. https://doi.org/10.1016/j.neulet.2016.12.015

Merkul’eva NS, Veshchitskii AA, Shkorbatova PYu, Shenkman BS, Musienko PE, Makarov FN (2017) Morphometric characteristics of the dorsal nuclei of Clarke in the rostral segments of the lumbar part of the spinal cord on cats. Neuroscience and Behavioral Physiology 47:851–856. https://doi.org/10.1007/s11055-017-0481-4

Vega JA, Cobo J (2021) Structural and biological basis for proprioception. Proprioception. https://doi.org/10.5772/intechopen.96787

Loewy AD (1970) A study of neuronal types in Clarke’s column in the adult cat. Journal of Comparative Neurology 139:53–79. https://doi.org/10.1002/cne.901390104

Burke RE, Rudomin P (2011) Spinal neurons and synapses. In: Comprehensive physiology. American cancer society, pp 877–944. https://doi.org/10.1002/cphy.cp010124

Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: Calcium binding proteins and gene expression profile in the mouse. Neuroscience Letters 518:161–166. https://doi.org/10.1016/j.neulet.2012.05.002

Snyder RL, Faull RLM, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, Cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 181:833–852. https://doi.org/10.1002/cne.901810409

Olude MA, Idowu AO, Mustapha OA, Olopade JO, Akinloye AK (2015) Spinal cord studies in the African Giant Rat (Cricetomys gambianus, Waterhouse). Nigerian journal of physiological sciences 30:25–32

Watson C, Sengul G, Tanaka I, Rusznak Z, Tokuno H (2015) The spinal cord of the common marmoset (Callithrix jacchus). Neuroscience Research 93:164–175. https://doi.org/10.1016/j.neures.2014.12.012

Hongo T, Jankowska E, Ohno T, Sasaki S, Yamashita M, Yoshida K (1983) The same interneurones mediate inhibition of dorsal spinocerebellar tract cells and lumbar motoneurones in the cat. The Journal of Physiology 342:161–180. https://doi.org/10.1113/jphysiol.1983.sp014845

Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 184:81–105. https://doi.org/10.1002/cne.901840106

Kuo DC, Nadelhaft I, Hisamitsu T, Groat WC de (1983) Segmental distribution and central projectionsof renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. Journal of Comparative Neurology 216:162–174. https://doi.org/10.1002/cne.902160205

Morgan C, Groat WC de, Nadelhaft I (1986) The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. Journal of Comparative Neurology 243:23–40. https://doi.org/10.1002/cne.902430104

Ritz LA, Greenspan JD (1985) Morphological features of lamina V neurons receiving nociceptive input in cat sacrocaudal spinal cord. Journal of Comparative Neurology 238:440–452. https://doi.org/10.1002/cne.902380408

Moschovakis AK, Solodkin M, Burke RE (1992) Anatomical and physiological study of interneurons in an oligosynaptic cutaneous reflex pathway in the cat hindlimb. Brain Research 586:311–318. https://doi.org/10.1016/0006-8993(92)91641-Q

Brown AG, Fyffe RE (1978) The morphology of group Ia afferent fibre collaterals in the spinal cord of the cat. The Journal of Physiology 274:111–127. https://doi.org/10.1113/jphysiol.1978.sp012137

Riddell JS, Hadian M (2000) Interneurones in pathways from group II muscle afferents in the lower-lumbar segments of the feline spinal cord. The Journal of Physiology 522:109–123. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00109.xm

Molenaar I, Kuypers HGJM (1978) Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Brain Research 152:429–450. https://doi.org/10.1016/0006-8993(78)91102-2

Deuschl G, Illert M (1981) Cytoarchitectonic organization of lumbar preganglionic sympathetic neurons in the cat. Journal of the Autonomic Nervous System 3:193–213. https://doi.org/10.1016/0165-1838(81)90063-1

Edwards SL, Anderson CR, Southwell BR, McAllen RM (1996) Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 70:825–832. https://doi.org/10.1016/S0306-4522(96)83019-3

Anderson CR, Keast JR, McLachlan EM (2009) Spinal Autonomic Preganglionic Neurons: the visceral efferent system of the spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The Spinal Cord. Academic Press, San Diego, pp 115–129

Baron R, Jan̈ig W, McLachlan EM (1985) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. III. The colonic nerves, incorporating an analysis of all components of the lumbar prevertebral outflow. Journal of Comparative Neurology 238:158–168. https://doi.org/10.1002/cne.902380204

Renshaw B (1946) Central effects of centripetal impulses in axons of spinal ventral roots. Journal of Neurophysiology 9:191–204. https://doi.org/10.1152/jn.1946.9.3.191

Alvarez FJ, Benito‐Gonzalez A, Siembab VC (2013) Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Annals of the New York Academy of Sciences 1279:22–31. https://doi.org/10.1111/nyas.12084

Matsushita M (1999) Projections from the lowest lumbar and sacral-caudal segments to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. Journal of Comparative Neurology 404:21–32. https://doi.org/10.1002/(SICI)1096-9861(19990201)404:1<21::AID-CNE2>3.0.CO;2-7

Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M (2001) Evx1 Is a postmitotic determinant of V0 interneuron identity in the spinal cord. Neuron 29:385–399. https://doi.org/10.1016/S0896-6273(01)00213-6

Jankowska E (2013) Spinal Interneurons. In: Pfaff DW (ed) Neuroscience in the 21st Century: From Basic to Clinical. Springer, New York, NY, pp 1063–1099. https://doi.org/10.1113/jphysiol.2012.248740

Morona R, Northcutt RG, González A (2010) Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Lungfishes. Brain, Behavior and Evolution 76:198–210. https://doi.org/10.1159/000321326

Berg EM, Bertuzzi M, Ampatzis K (2018) Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network. Brain Structure and Function 223:2181–2196. https://doi.org/10.1007/s00429-018-1622-4

Morona R, Moreno N, López JM, González A (2006) Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis. Journal of Comparative Neurology 494:763–783. https://doi.org/10.1002/cne.20836

Morona R, López JM, González A (2006) Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase. Brain Research Bulletin 69:519–534. https://doi.org/10.1016/j.brainresbull.2006.02.022

Deuchars SA, Lall VK (2015) Sympathetic preganglionic neurons: properties and inputs. Comprehensive Physiology 5:829–869. https://doi.org/10.1002/cphy.c140020

Kayalioglu G, Robertson B, Kristensson K, Grant G (1999) Nitric oxide synthase and interferon-gamma receptor immunoreactivities in relation to ascending spinal pathways to thalamus, hypothalamus, and the periaqueductal grey in the rat. Somatosensory & Motor Research 16:280–290. https://doi.org/10.1080/08990229970348

Bertrand S, Cazalets J-R (2002) The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat. European Journal of Neuroscience 16:1741–1750. https://doi.org/10.1046/j.1460-9568.2002.02233.x

De Groat WC, Yoshimura N (2010) Changes in afferent activity after spinal cord injury. Neurourology and Urodynamics 29:63–76. https://doi.org/10.1002/nau.20761