ГИПОТАЛАМИЧЕСКИЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ СТАРЕНИЯ
PDF

Ключевые слова

гипоталамус
старение
нейровоспаление
микроРНК

Аннотация

Гипоталамус является важнейшим интегратором функций эндокринной, автономной, соматической нервной системы, участвует в регуляции ритмических процессов и, предположительно, в программировании процессов старения. К числу гипоталамических ядер, ответственных за реализацию программы старения, предположительно относят супрахиазмальное ядро и срединную группу ядер, включая аркуатное, вентромедиальное и дорсомедиальное ядра. Процесс старения в гипоталамусе сопровождается нарушением баланса возбуждение/торможение за счет дисрегуляции ГАМК-ергической системы, уменьшением частоты импульсации нейронов, нарушением обмена кальция, увеличением продукции оксида азота, снижением аутофагии, нарушением процессов внутриклеточного сигналинга, в частности Sirt1, mTOR, NF-κB, AMPK, P53, FoxO. Также важная роль в гипоталамическом старении принадлежит таницитам, что выражается в нарушении их связи с нейронами и барьерной функции. Стволовые клетки гипоталамуса, расположенные преимущественно в области срединной группы ядер, выделяют экзосомальные миРНК, которые также ответственны за антивозрастные эффекты этих клеток. При этом количество самих стволовых гипоталамических клеток и экзосомальных миРНК уменьшается по мере старения.

https://doi.org/10.31857/S0044452921030074
PDF

Литература

Анисимов ВН (2008) Молекулярные и физиологические механизмы старения: В 2-х т. СПб.: Наука [Anisimov VN (2008) Molecular and physiological mechanisms of aging: In 2 volumes. St. Petersburg: Nauka].

Анисимов ВН, Михальский АИ, Новосельцев ВН, Романюха АА, Яшин АИ (2010) Основные принципы построения многостадийной многоуровневой математической модели старения. Успехи геронтол 23(2): 163–167. [Anisimov VN, Mikhal'skiy AI, Novoseltsev VN, Romanyukha AA, Yashin AI (2010) Basic principles of building a multi-stage multi-level mathematical model of aging. Adv. Gerontol. 23 (2): 163–167.]

Дильман ВМ (1981) Большие биологические часы:(Введение в интегральную медицину). – Знание. [Dilman VM (1981) Large biological clock: (An introduction to integral medicine). – Znanie.].

Cai D, Khor S (2019) "Hypothalamic Microinflammation" Paradigm in Aging and Metabolic Diseases. Cell Metab 30(1): 19–35.

Kim K, Choe HK (2019) Role of hypothalamus in aging and its underlying cellular mechanisms. Mech. Aging Dev 177: 74–79.

Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am. J. Physiol. Endocrinol Metab 294(5): E827–832. https://doi.org/10.1152/ajpendo.00670.2007.

Dudas B (Ed) (2013) Human Hypothalamus: Anatomy, Functions and Disorders. Nova Science Publishers, New York.

Ковальзон ВМ, Стрыгин КН (2013) Нейрохимические механизмы регуляции сна и бодрствования: роль блокаторов гистаминовых рецепторов в лечении инсомнии. Эффективная фармакотерапия 12: 8–14. [Kovalzon VM, Strygin KN (2018) Neurochemical mechanisms of sleep and wakefulness regulation: the role of histamine receptor blockers in the treatment of insomnia. Effective Pharmacotherapy 12: 8–14.]

Qin C, Li J, Tang K (2018) The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology 159(9):3458–3472. doi: 10.1210/en.2018-00453.

Brown CH, Ludwig M, Tasker JG, Stern JE (2020) Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 32(6):e12856. doi: 10.1111/jne.12856.

Фролькис ВВ (1991) Старение мозга. Л, Наука. [Frolkis VV (1991)Aging of the brain. L, Science.].

Hsu HK, Peng M-T (1978) Hypothalamic neuron number of the old female rats // Gerontology 24: 434–440.

Sartin JL, Lamperti AA (1985) Neuron numbers in hypothalamic nuclei of young, middle-aged and aged male rats. Experientia 41: 109–111.

Flood DG, Coleman PD (1993) Dendritic regression dissociated from neuronal death but associated with partial deafferentation in aging rat supraoptic nucleus. Neurobiol Aging 14:575–587.

Madeira MD, Ferreira-Silva L, Ruela C, Paula-Barbosa MM (2001) Differential effects of the aging process on the morphology of the hypothalamic ventromedial nucleus of male and female rats. Neurosci Lett 314(1-2):73–76. https://doi.org/10.1016/s0304-3940(01)02294-7.

Roberts DE, Killiany RJ, Rosene DL (2012) Neuron Numbers in the Hypothalamus of the Normal Aging Rhesus Monkey: Stability Across the Adult Lifespan and Between the Sexes. J Comp Neurol 520 (6): 1181–1197.

Leal S, Andrade JP, Paula-Barbosa MM, Madeira MD (1998) Arcuate nucleus of the hypothalamus: effects of age and sex. J Comp Neurol 401(1):65–88. https://doi.org/10.1002/(sici)1096-9861(19981109)401:1<65::aid-cne5>3.0.co;2-d.

Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY (2012) Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75: 425–436.

Hrabovszky E, Takács S, Göcz B, Skrapits K (2019) New Perspectives for Anatomical and Molecular Studies of Kisspeptin Neurons in the Aging Human Brain. Neuroendocrinology.109(3):230-241. https://doi.org/10.1159/000496566.

Machado-Salas J, Scheibel ME, Scheibel AB (1977) Morphologic changes in the hypothalamus of the old mouse. Exp Neurol 57:102–111.

Rizzo V, Richman J, Puthanveettil SV (2015) Dissecting mechanisms of brain aging by studying the intrinsic excitability of neurons. Front Aging Neurosci 6:337. https://doi.org/10.3389/fnagi.2014.00337.

Kumar A, Foster TC (2004) Enhanced long-term potentiation during aging is masked by processes involving intracellular calcium stores. J Neurophysiol 91:2437.

Toescu EC, Verkhratsky A (2000) Parameters of calcium homeostasis in normal neuronal ageing. J Anat 197: 563.

Need AC, Irvine EE, Giese KP (2003) Learning and memory impairments in Kv beta 1.1-null mutants are rescued by environmental enrichment or ageing. Eur J Neurosci 18. 1640–1644. https://doi.org/10.1046/j.1460-9568.2003.02889.x

Farajnia S, Meijer JH, Michel S (2015) Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons. Neurobiol Aging 36(6):2176–2183. https://doi.org/10.1016/j.neurobiolaging.2014.12.040.

Vishnyakova PA, Moiseev KY, Spirichev AA, Emanuilov AI, Nozdrachev AD, Masliukov PM (2020) Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat Rec (Hoboken). https://doi.org/10.1002/ar.24536.

Rozycka A, Liguz-Lecznar M (2017) The space where aging acts: focus on the GABAergic synapse. Aging Cell 16(4):634–643. https://doi.org/10.1111/acel.12605.

Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY (2012) Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75:425–436.

Wang Y, Garro M, Dantzler HA, Taylor JA, Kline DD, Kuehl-Kovarik MC Age affects spontaneous activity and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Endocrinology 149(10):4938–4947. 2008. https://doi.org/10.1210/en.2008-0308.

Wang Y, Kuehl-Kovarik MC Estradiol directly attenuates sodium currents and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Brain Res 2012 1436:81–91. https://doi.org/10.1016/j.brainres.2011.12.013.

Pfeffer M, Korf HW, Wicht H (2018) Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol 258:215–221.

Epelbaum J, Terrien J (2020) Mini-review: Aging of the neuroendocrine system: Insights from nonhuman primate models. Prog Neuropsychopharmacol Biol Psychiatry 100:109854. https://doi.org/10.1016/j.pnpbp.2019.109854.

Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18. 164–179.

Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19(8):453–469. https://doi.org/10.1038/s41583-018-0026-z.

Noguchi T, Leise TL, Kingsbury NJ, Diemer T, Wang LL, Henson MA, Welsh DK (2017) Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. eNeuro 4(4):ENEURO.0160-17.2017. https://doi.org/10.1523/ENEURO.0160-17.2017.

Patton AP, Chesham JE, Hastings MH (2016) Combined pharmacological and genetic manipulations unlock unprecedented temporal elasticity and reveal phase- specific modulation of the molecular circadian clock of the mouse suprachiasmatic nucleus. J Neurosci 36: 9326–9341.

Colwell CS (2011) Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12: 553–569.

Meijer JH, Michel S (2015) Neurophysiological analysis of the suprachiasmatic nucleus: a challenge at multiple levels. Methods Enzymol 552: 75–102.

Houben T, Coomans CP, Meijer JH (2014) Regulation of circadian and acute activity levels by the murine suprachiasmatic nuclei. PLoS ONE 9:e110172.

Kondratova AA, Kondratov RV (2012) The circadian clock and pathology of the ageing brain. Nat Rev Neurosci 13(5):325–335.

Chen CY, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, McClung CA (2016) Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci USA 113(1):206–211.

Rijo-Ferreira F, Takahashi JS (2019) Genomics of circadian rhythms in health and disease. Genome Med 11(1):82. https://doi.org/10.1186/s13073-019-0704-0.

Buijink MR, Olde Engberink AHO, Wit CB, Almog A, Meijer JH, Rohling JHT, Michel S Aging Affects the Capacity of Photoperiodic Adaptation Downstream from the Central Molecular Clock. J Biol Rhythms 35(2):167–179. 2020 https://doi.org/10.1177/0748730419900867.

Yamaguchi A, Tatsumoto M, Matsumura R, Endo T, Hirata K, Tokuda I, Akashi M (2018) Normal peripheral circadian phase in the old-old with abnormal circadian behavior. Genes Cells 23(10):849–859.

Zhdanova IV, Masuda K, Quasarano-Kourkoulis C, Rosene DL, Killiany RJ, Wang S (2011) Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta. J Biol Rhythms 26(2):149–159.

Kawakami F, Okamura H, Tamada Y, Maebayashi Y, Fukui K, Ibata Y (1997) Loss of day-night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neurosci Lett 222(2): 99–102.

Palomba M, Nygård M, Florenzano F, Bertini G, Kristensson K, Bentivoglio M (2008) Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms 23(3):220–231.

Aujard F, Cayetanot F, Terrien J, Van Someren EJ (2007) Attenuated effect of increased daylength on activity rhythm in the old mouse lemur, a non-human primate. Exp Gerontol 42 (11):1079–1087.

Cayetanot F, Bentivoglio M, Aujard F (2005) Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal agingrelated alterations of circadian pacemaker neurons in a non-human primate. Eur J Neurosci 22(4):902–910.

Eghlidi DH, Luna SL, Brown DI, Garyfallou VT, Kohama SG, Urbanski HF (2018) Gene expression profiling of the SCN in young and old rhesus macaques. J Mol Endocrinol 61(2):57–67. https://doi.org/101530/JME-18-0062

Шпаков АО, Деркач КВ (2016) Меланокортиновая сигнальная система гипоталамуса и ее функциональное состояние в условиях сахарного диабета 2-го типа и метаболического синдрома. Рос физиолю журн им ИМ Сеченова 102(1) 18–40. [Shpakov AO, Derkach KV (2016 ) Melanocortin signaling system of the hypothalamus and its functional state in conditions of type 2 diabetes mellitus and metabolic syndrome. IM Sechenov Ros Phyziol Zhurn 102(1):18–40. (In Russ).]

Romanov RA, Alpár A, Hökfelt T, Harkany T Unified Classification of Molecular, Network, and Endocrine Features of Hypothalamic Neurons. Annu Rev Neurosci 42:1–26. https://doi.org/10.1146/annurev-neuro-070918-050414. 2019.

Ashpole NM, Sanders JE, Hodges EL, Yan H, Sonntag WE Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol 68:76–81. 2015.

Bartke A (2003) Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 78:210–216.

Hirschberg PR, Sarkar P, Teegala SB, Routh VH (2020) Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 32(1): e12773. https://doi.org/10.1111/jne.12773.

Kammel LG, Correa SM (2020) Selective sexual differentiation of neurone populations may contribute to sex-specific outputs of the ventromedial nucleus of the hypothalamus. J Neuroendocrinol 32(1): e12801. https://doi.org/10.1111/jne.12801.

Mobbs CV, Moreno CL, Poplawski M (2013) Metabolic mystery: aging, obesity, diabetes, and the ventromedial hypothalamus. Trends Endocrinol Metab 24(10): 488–494.

Orozco-Solis R, Aguilar-Arnal L, Murakami M, Peruquetti R, Ramadori G, Coppari R, Sassone-Corsi P (2016) The Circadian Clock in the Ventromedial Hypothalamus Controls Cyclic Energy Expenditure. Cell Metab 23(3):467–478.

Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S Jr, Elmquist JK, Lowell BB (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49(2):191–203.

Sohn JW, Oh Y, Kim KW, Lee S, Williams KW, Elmquist JK (2016) Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Mol Metab J 5(8):669–679. https://doi.org/10.1016/j.molmet.2016.06.004.

Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18: 361–377.

Kim KW, Zhao L, Donato JJr, Kohno D, Xu Y, Elias CF, Lee C, Parker KL, Elmquist JK (2011) Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proceedings of the National Academy of Sciences of the United States of America 108(26):10673–10678. https://doi.org/10.1073/pnas.1102364108 .

Kinyua AW, Yang DJ, Chang I, Kim KW (2016) Steroidogenic Factor 1 in the Ventromedial Nucleus of the Hypothalamus Regulates Age-Dependent Obesity. PLoS One 11(9):e0162352. https://doi.org/10.1371/journal.pone.0162352.

Majdic G, Young M, Gomez-Sanchez E, Anderson P, Szczepaniak LS, Dobbins RL, McGarry JD, Parker KL (2002) Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 143:607–614.

Liu W, Liu M, Fan W, Nawata H, Yanase T The (2006) Gly146Ala variation in human SF-1 gene: its association with insulin resistance and type 2 diabetes in Chinese. Diabetes Res Clin Pract 73:322–328.

Моисеев КЮ, Спиричев АА, Вишнякова ПА, Ноздрачев АД, Маслюков ПМ (2020) Изменения экспрессии стероидогенного фактора 1 (SF-1) в нейронах вентромедиального ядра гипоталамуса крысы при старении. Рос Физиол Журн им ИМ Сеченова 106(6): 720–727. [Moiseev KYu, Spirichev AA, Vishnyakova PA, Nozdrachev AD, Maslyukov PM (2020) Changes in the expression of steroidogenic factor 1 (SF-1) in neurons of the ventromedial nucleus of the rat hypothalamus during aging. IM Sechenov Ros Fiziol J 106(6): 720–727. (In Russ)].

Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J (2018) The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 39(3):333–368. https://doi.org/10.1210/er.2017-00235.

Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71(1):142–154.

Garfield AS, Shah BP, Burgess CR, Li MM, Li C, Steger JS, Madara JC, Campbell JN, Kroeger D, Scammell TE, Tannous BA, Myers MGJr, Andermann ML, Krashes MJ, Lowell BB (2016) Dynamic GABAergic afferent modulation of AgRP neurons. Nat Neurosci 19(12):1628–1635.

Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwartzenburg C, Morrison CD, Derbenev AV, Zsombok A, Münzberg H (2014) Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab 3(7):681–693.

Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci USA 103(32):12150–12155. https://doi.org/10.1073/pnas.0604189103

Northeast RC, Vyazovskiy VV, Bechtold DA (2020) Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. Curr Opin Physiol. 15:183–191. https://doi.org/10.1016/j.cophys.2020.02.003.

Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33):10691–10702.

Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28(3):152–157.

Bechtold DA, Loudon ASI (2013) Hypothalamic clocks and rhythms in feeding behaviour. Trends Neurosci 36:74–82.

Guilding C, Hughes ATL, Brown TM, Namvar S, Piggins HD (2009) A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol Brain 2:28.

Chen K-S, Xu M, Zhang Z, Chang W-C, Gaj T, Schaffer DV, Dan Y (2018) A hypothalamic switch for REM and non-REM sleep. Neuron 97:1168–1176.e4.

Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–738.

Acosta-Galvan G, Yi C-X, van der Vliet J, Jhamandas JH, Panula P, Angeles-Castellanos M, del Carmen Basualdo M, Escobar C, Buijs RM (2011) Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci USA 108: 5813–5818.

Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9(3): 398–407.

Joseph-Bravo P, Jaimes-Hoy L, Charli JL (2016) Advances in TRH signaling. Rev Endocr Metab Disord 17(4):545–558. https://doi.org/10.1007/s11154-016-9375-y.

Daimon CM, Chirdon P, Maudsley S, Martin B The role of Thyrotropin Releasing Hormone in aging and neurodegenerative diseases. Am J Alzheimers Dis (Columbia) 1(1):10.7726/ajad.2013.1003. 2013. https://doi.org/10.7726/ajad.2013.1003.

Roelfsema F, Boelen A, Kalsbeek A, Fliers E (2017) Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab 31(5):487–503. https://doi.org/10.1016/j.beem.2017.09.004.

Kunimura Y, Iwata K, Ishigami A, Ozawa H (2017) Age-related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats. Neurobiol Aging 50: 30–38.

Tsutsumi R, Webster NJ (2009) GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J 56(6):729–737. https://doi.org/10.1507/endocrj.k09e-185

Yin W, Gore AC (2006) Neuroendocrine control of reproductive aging: roles of GnRH neurons. Reproduction. 131(3): 403–414. https://doi.org/10.1530/rep.1.00617

Rance NE (2009) Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30(1): 111–122. https://doi.org/10.1016/j.peptides.2008.05.016

Satoh A, Imai SI, Guarente L (2017) The brain, sirtuins, and ageing. Nat Rev Neurosci 18(6): 362–374. https://doi.org/10.1038/nrn.2017.42.

Hong S, Zhao B, Lombard DB, Fingar DC, Inoki K (2014) Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 289(19):13132–13141. https://doi.org/10.1074/jbc.M113.520734.

Igarashi M., Guarente L. mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction. Cell. 166(2):436–450. 2016. https://doi.org/10.1016/j.cell.2016.05.044.

Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R, Stuart RC, Perello M, Vianna CR, Nillni EA, Rahmouni K, Coppari R (2010) SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12(1):78–87. https://doi.org/10.1016/j.cmet.2010.05.010.

Al-Massadi O, Quiñones M, Clasadonte J, Hernandez-Bautista R, Romero-Picó A, Folgueira C, Morgan DA, Kalló I, Heras V, Senra A, Funderburk SC, Krashes MJ, Souto Y, Fidalgo M, Luquet S, Chee MJ, Imbernon M, Beiroa D, García-Caballero L, Gallego R, Lam BYH, Yeo G, Lopez M, Liposits Z, Rahmouni K, Prevot V, Dieguez C, Nogueiras R (2019) MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes 68(12):2210–2222. https://doi.org/10.2337/db19-0029

Spirichev AA, Moiseev KY, Masliukov PM (2020) Sirtuin 1 Expression in the Rat Ventromedial and Dorsomedial Hypothalamic Nuclei during Ageing. Bull Exp Biol Med 169(5):698–700. https://doi.org/10.1007/s10517-020-04958-8

Satoh A, Imai S (2014) Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat Commun 5: 4211. https://doi.org/10.1038/ncomms5211.

Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153(7):1448–1460. https://doi.org/10.1016/j.cell.2013.05.027.

Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18(3): 416–430.

Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21(4): 183–203. https://doi.org/10.1038/s41580-019-0199-y.

Saxton RA, Sabatini DM (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell 168(6):960–976. https://doi.org/10.1016/j.cell.2017.02.004.

Martínez de Morentin PB, Martinez-Sanchez N, Roa J, Ferno J, Nogueiras R, Tena-Sempere M, Dieguez C, Lopez M (2014) Hypothalamic mTOR: the rookie energy sensor. Curr Mol Med 14(1): 3–21. https://doi.org/10.2174/1566524013666131118103706.

Kim JG, Horvath TL (2012) mTOR signaling fades POMC neurons during aging. Neuron 75: 356–357.

Mori H, Inoki K, Münzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D, MacDougald OA, Myers MG Jr, Guan KL (2009) Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 9(4): 362–374.

Blouet C, Ono H, Schwartz GJ (2008) Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab 8: 459–467.

Chellappa K, Brinkman JA, Mukherjee S, Morrison M, Alotaibi MI, Carbajal KA, Alhadeff AL, Perron IJ, Yao R, Purdy CS, DeFelice DM, Wakai MH, Tomasiewicz J, Lin A, Meyer E, Peng Y, Arriola Apelo SI, Puglielli L, Betley JN, Paschos GK, Baur JA, Lamming DW (2019) Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell. 18(5): e13014. https://doi.org/10.1111/acel.13014.

Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15(2):196–207. https://doi.org/10.1111/acel.12427.

Hong SH, Lee KS, Kwak SJ, Kim AK, Bai H, Jung MS, Kwon OY, Song WJ, Tatar M, Yu K (2012) Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet 8(8): e1002857. https://doi.org/10.1371/journal.pgen.1002857.

Shi C, Shi R, Guo H (2020) Tumor necrosis factor α reduces gonadotropin-releasing hormone release through increase of forkhead box protein O1 activity. Neuroreport 31(6):473–477. https://doi.org/10.1097/WNR.0000000000001424.

Bahadoran Z., Carlström M., Mirmiran P., Ghasemi A. Nitric oxide: to be or not to be an endocrine hormone? Acta Physiol. (Oxf). e13443. 2020. https://doi.org/10.1111/apha.13443.

Chachlaki K, Garthwaite J, Prevot V (2017) The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 9:521–535.

Moiseev KY, Vishnyakova PA, Porseva VV, Masliukov AP, Spirichev AA, Emanuilov AI, Masliukov PM (2020) Changes of nNOS expression in the tuberal hypothalamic nuclei during ageing. Nitric Oxide 100-101: 1–6. https://doi.org/10.1016/j.niox.2020.04.002.

Dawson TM, Dawson VL (2018) Nitric oxide signaling in neurodegeneration and cell death. Adv Pharmacol 82: 57–83.

Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson TM, Dawson VL, Snyder SH, Sawa A (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nature Cell Biology 10(7):866–873.

Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P (2015) Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: Study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat. Neuroscience 303:149–159.

Belgardt BF, Mauer J, Wunderlich FT, Ernst MB, Pal M, Spohn G, Brönneke HS, Brodesser S, Hampel B, Schauss AC, Brüning JC (2010) Hypothalamic and pituitary c-Jun N-terminal kinase 1 signaling coordinately regulates glucose metabolism. Proc Natl Acad Sci USA 107(13):6028–6033. https://doi.org/10.1073/pnas.1001796107.

Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497(7448):211–216. https://doi.org/10.1038/nature12143.

Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135(1):61–73. https://doi.org/10.1016/j.cell.2008.07.043.

Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D (2017) Astrocytic Process Plasticity and IKKβ/NF-κB in Central Control of Blood Glucose, Blood Pressure, and Body Weight. Cell Metab 25(5):1091–1102.e4. https://doi.org/10.1016/j.cmet.2017.04.002.

McMurphy T, Huang W, Liu X, Siu JJ, Queen NJ, Xiao R, Cao L (2019) Hypothalamic gene transfer of BDNF promotes healthy aging in mice. Aging Cell 18(2):e12846. https://doi.org/10.1111/acel.12846.

Ito Y, Banno R, Shibata M, Adachi K, Hagimoto S, Hagiwara D, Ozawa Y, Goto M, Suga H, Sugimura Y, Bettler B, Oiso Y, Arima H (2013) GABA type B receptor signaling in proopiomelanocortin neurons protects against obesity, insulin resistance, and hypothalamic inflammation in male mice on a high-fat diet. J Neurosci 33(43):17166–71713. https://doi.org/10.1523/JNEUROSCI.0897-13.2013

Yu B, Cai D (2017) Neural Programmatic Role of Leptin, TNFα, Melanocortin, and Glutamate in Blood Pressure Regulation vs Obesity-Related Hypertension in Male C57BL/6 Mice. Endocrinology 158(6):1766–1775. https://doi.org/10.1210/en.2016-1872.

Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S, Schwartz GJ, Pessin JE, Singh R (2012) Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 13(3):258–265. https://doi.org/10.1038/embor.2011.260.

Aveleira CA, Botelho M, Carmo-Silva S, Pascoal JF, Ferreira-Marques M, Nóbrega C, Cortes L, Valero J, Sousa-Ferreira L, Álvaro AR, Santana M, Kügler S, Pereira de Almeida L, Cavadas C (2015) Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proc Natl Acad Sci USA 112(13): E1642-1651. https://doi.org/10.1073/pnas.1416609112.

Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D (2017) Hypothalamic stem cells control aging speed partly through exosomal miRNAs. Nature 548(7665): 52-57. https://doi.org/10.1038/nature23282.

Ying SY, Chang DC, Miller JD, Lin SL (2006) The microRNA: overview of the RNA gene that modulates gene functions. Methods Mol Biol 342:1-18. https://doi.org/10.1385/1-59745-123-1:1.

Taouis M (2016) MicroRNAs in the hypothalamus. Best Pract Res Clin Endocrinol Metab 30(5):641-651. https://doi.org/10.1016/j.immuni.2009.09.019.

Vinnikov IA, Domanskyi A (2017) Can we treat neurodegenerative diseases by preventing an age-related decline in microRNA expression? Neural Regen Res 12(10):1602-1604. https://doi.org/10.4103/1673-5374.217328.

Sangiao-Alvarellos S, Pena-Bello L, Manfredi-Lozano M, Tena-Sempere M, Cordido F (2014) Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: impact of obesity and conditions of negative energy balance. Endocrinology 155(5):1838-1850. https://doi.org/10.1210/en.2013-1770.

Jiang S (2019) A Regulator of Metabolic Reprogramming: MicroRNA Let-7. Transl Oncol 12(7):1005-1013. https://doi.org/10.1016/j.tranon.2019.04.013.

Dubinsky AN, Dastidar SG, Hsu CL, Zahra R, Djakovic SN, Duarte S, Esau CC, Spencer B, Ashe TD, Fischer KM, MacKenna DA, Sopher BL, Masliah E, Gaasterland T, Chau BN, Pereira de Almeida L, Morrison BE, La Spada AR (2014) Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy. Cell Metab 20:626–638. https://doi.org/10.1016/j.cmet.2014.09.001.

Kim CK, Asimes A, Zhang M, Son BT, Kirk JA, Pak TR (2020) Differential Stability of miR-9-5p and miR-9-3p in the Brain Is Determined by Their Unique Cis- and Trans-Acting Elements eNeuro 7(3): ENEURO.0094-20.2020. https://doi.org/10.1523/ENEURO.0094-20.2020.

Ji YF, Wang D, Liu YR, Ma XR, Lu H, Zhang BA (2018) MicroRNA-132 attenuates LPS-induced inflammatory injury by targeting TRAF6 in neuronal cell line HT-22. J Cell Biochem 119(7):5528-5537. https://doi.org/10.1002/jcb.26720.

Li M, Guo Q, Cai H, Wang H, Ma Z, Zhang X (2020) miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation. J Cell Physiol 235(4):3362-3371. https://doi.org/10.1002/jcp.29224.