ВЛИЯНИЕ ОХЛАЖДЕНИЯ НА ЗАВИСИМОСТЬ ЧАСТОТА–СИЛА, ЭФФЕКТ ПОТЕНЦИАЦИИ ПАУЗОЙ И ЧАСТОТНО-ЗАВИСИМОЕ УСКОРЕНИЕ РЕЛАКСАЦИИ В МИОКАРДЕ МОРСКОЙ СВИНКИ
PDF

Ключевые слова

сердце
папиллярная мышца
сила сокращения
ритмоинотропные отношения
морская свинка

Аннотация

Общеизвестно, что глубокая гипотермия приводит к нарушениям в работе сердца вплоть до полной остановки, в тоже время гипотермия может предотвращать гипоксические повреждения. При этом значительная часть работ, посвященных глубокой гипотермии, проведена на крысах и мышах, миокард которых значительно отличается от человеческого. В данной работе мы исследовали влияние глубокой гипотермии на ритмоинотропные явления в миокарде морской свинки, который во многом схож с миокардом человека. Проведено исследование зависимости частота-сила, эффекта потенциации паузой и частотно-зависимого ускорения расслабления в диапазоне 0.1 - 3.0 Гц в папиллярных мышцах правого желудочка морской свинки, при температурах 30, 20 и 10°С. Показано, что при охлаждении до температуры 10°С включительно сохраняется положительная зависимость частота-сила, в формировании которой ведущую роль играет Са2+ ток L-типа, что говорит о том, что данный механизм сохраняет свою функцию даже в условиях глубокой гипотермии. Эффект потенциации паузой сохраняется до 20°С включительно, при дальнейшем охлаждении потенциация сменяется спадом. Данный факт может свидетельствовать о том, что при 10°С нарушается функционирование саркоплазматического ретикулума, что проявляется инвертировании эффекта потенциации паузой. Эффект частотно-зависимого ускорения кинетики сокращения также сохраняется до 20°С включительно. Это может служить подтверждением того, что проявление данного эффекта в миокарде связано с работой саркоплазматического ретикулума. Таким образом, нами было обнаружено, что среди исследованных нами частотно-зависимых эффектов есть блокируемые глубокой гипотермией (эффект потенциации паузой и частотно-зависимое ускорение расслабления) и устойчивые к данному воздействию (зависимость, частота, сила), что может отражать различия в температурной чувствительности лежащих в их основе Са2+ транспортирующих механизмов.

PDF

Литература

Endoh M (2004) Force-frequency relationship in intact mammalian ventricular myocardium: Physiological and pathophysiological relevance. Eur J Pharmacol 500(1-3):73–86. https://doi.org/10.1016/j.ejphar.2004.07.013

Stuyvers B, McCulloch A, Guo J, Duff H, ter Keurs H (2002) Effect of stimulation rate, sarcomere length and Ca(2+) on force generation by mouse cardiac muscle. J Physiol 544(3):817–830. https://doi.org/10.1113/jphysiol.2002.024430

Kassiri Z, Myers R, Kaprielian R, Banijamali H, Backx P (2000) Rate-dependent changes of twitch force duration in rat cardiac trabeculae: A property of the contractile system. J Physiol 524 Pt 1:221–231. https://doi.org/10.1111/j.1469-7793.2000.t01-3-00221.x

Nakipova O, Zakharova N, Andreeva L, Chumaeva N, Averin A, Kosarskii L, Anufriev A, Lewinski D, Kockskamper J, Pieske B (2007) The seasonal peculiarities of force-frequency relationships in active ground squirrel Spermophilus undulatus ventricle. Cryobiology 55(3):173–181.https://doi.org/10.1016/j.cryobiol.2007.07.001

Zakharova N, Nakipova O, Averin A, Tikhonov K, Solomonov N (2009) Changes in force-frequency relationships in cardiac papillary muscles of hibernating ground squirrels under cooling. Dokl Biol Sci 424:21–24.https://doi.org/10.1134/s0012496609010074

Kondo N, Shibata S (1984) Calcium source for excitation-contraction coupling in myocardium of nonhibernating and hibernating chipmunks. Science 225(4662):641–643.https://doi.org/10.1126/science.6740332

Nakipova O, Averin A, Kosarsky L, Ignatiev D (2019) The Force-Frequency Dependence in the Heart Papillary Muscle of Ground Squirrel as a Reflection of Changes in the Functional State of Animals during the Annual Cycle. BIOPHYSICS 64(5):786–792.https://doi.org/10.1134/S0006350919050191

Mulieri L, Hasenfuss G, Leavitt B, Allen P, Alpert N (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85(5):1743–1750.https://doi.org/10.1161/01.cir.85.5.1743

Silverman D, Rambod M, Lustgarten D, Lobel R, LeWinter M, Meyer M (2020) Heart Rate-Induced Myocardial Ca2+ Retention and Left Ventricular Volume Loss in Patients With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 9(17):e017215.https://doi.org/10.1161/JAHA.120.017215

Pieske B, Maier L, Bers D, Hasenfuss G (1999) Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circulation research 85(1):38–46.https://doi.org/10.1161/01.res.85.1.38

Lamberts R, Hamdani N, Soekhoe T, Boontje N, Zaremba R, Walker L, Tombe P de, van der Velden J, Stienen G (2007) Frequency-dependent myofilament Ca2+ desensitization in failing rat myocardium. J Physiol 582(Pt 2):695–709.https://doi.org/10.1113/jphysiol.2007.134486

Lukas A, Bose R (1986) Mechanisms of frequency-induced potentiation of contractions in isolated rat atria. Naunyn Schmiedebergs Arch Pharmacol 334(4):480–487.https://doi.org/10.1007/BF00569390

Ahlberg S, Hamlen R, Ewert D, Iaizzo P, Mulligan L (2007) Novel means to monitor cardiac performance: The impact of the force-frequency and force-interval relationships on recirculation fraction and potentiation ratio. Cardiovasc Eng 7(1):32–38.https://doi.org/10.1007/s10558-007-9023-y

Schillinger W, Lehnart S, Prestle J, Preuss M, Pieske B, Maier L, Meyer M, Just H, Hasenfuss G (1998) Influence of SR Ca(2+)-ATPase and Na(+)-Ca(2+)-exchanger on the force-frequency relation. Basic Res Cardiol 93 Suppl 1:38–45.https://doi.org/10.1007/s003950050208

Kondratieva D, Afanasiev S, Usov V, Popov S (2017) Rhythmoinotropic Response of Papillary Muscles in Rats with Different Severity of Postinfarction Cardiosclerosis. Bull Exp Biol Med 163(5):612–616.https://doi.org/10.1007/s10517-017-3861-4

Kass D (1998) Force-frequency relation in patients with left ventricular hypertrophy and failure. Basic Res Cardiol 93 Suppl 1:108–116.https://doi.org/10.1007/s003950050232

Tsai M-S, Huang C-H, Yu P-H, Tsai C-Y, Chen H-W, Cheng H-J, Chang W-T, Wang T-D, Chen W-J (2015) Prolonged cooling duration mitigates myocardial and cerebral damage in cardiac arrest. Am J Emerg Med 33(10):1374–1381.https://doi.org/10.1016/j.ajem.2015.07.030

Yu T, Yang Z, Li H, Ding Y, Huang Z, Li Y (2015) Short Duration Combined Mild Hypothermia Improves Resuscitation Outcomes in a Porcine Model of Prolonged Cardiac Arrest. Biomed Res Int 2015:279192.https://doi.org/10.1155/2015/279192

Rittenberger J, Doshi A, Reynolds J (2015) Postcardiac Arrest Management. Emerg Med Clin North Am 33(3):691–712.https://doi.org/10.1016/j.emc.2015.04.011

Liu B, Wang L, Belke D (1991) Effect of low temperature on the cytosolic free Ca2+ in rat ventricular myocytes. Cell calcium 12(1):11–18.https://doi.org/10.1016/0143-4160(91)90080-x

Wang, Wang S-Q, Cao H-M, Zhou Z-Q (1997) Temperature dependence of the myocardial excitability of ground squirrel and rat. Journal of Thermal Biology 22(3):195–199.https://doi.org/10.1016/S0306-4565(97)00010-7

Stowe D, Fujita S, An J, Paulsen R, Varadarajan S, Smart S (1999) Modulation of myocardial function and Ca2+ sensitivity by moderate hypothermia in guinea pig isolated hearts. The American journal of physiology 277(6):H2321–H2332. https://doi.org/10.1152/ajpheart.1999.277.6.H2321

Egorov Y, Glukhov A, Efimov I, Rosenshtraukh L (2012) Hypothermia-induced spatially discordant action potential duration alternans and arrhythmogenesis in nonhibernating versus hibernating mammals. American journal of physiology. Heart and circulatory physiology 303(8):H1035–H1046.https://doi.org/10.1152/ajpheart.00786.2011

Shutt R, Howlett S (2008) Hypothermia increases the gain of excitation-contraction coupling in guinea pig ventricular myocytes. American journal of physiology. Cell physiology 295(3):C692–700.https://doi.org/10.1152/ajpcell.00287.2008

Shattock M, Bers D (1987) Inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: Implications for excitation-contraction coupling. Circulation research 61(6):761–771. https://doi.org/10.1161/01.res.61.6.761

Mattheussen M, Mubagwa K, van Aken H, Wusten R, Boutros A, Flameng W (1996) Interaction of heart rate and hypothermia on global myocardial contraction of the isolated rabbit heart. Anesthesia and analgesia 82(5):975–981.https://doi.org/10.1097/00000539-199605000-00015

Hiranandani N, Varian K, Monasky M, Janssen P (2006) Frequency-dependent contractile response of isolated cardiac trabeculae under hypo-, normo-, and hyperthermic conditions. Journal of applied physiology (Bethesda, Md. : 1985) 100(5):1727–1732.https://doi.org/10.1152/japplphysiol.01244.2005

Redel A, Baumgartner W, Golenhofen K, Drenckhahn D, Golenhofen N (2002) Mechanical activity and force-frequency relationship of isolated mouse papillary muscle: Effects of extracellular calcium concentration, temperature and contraction type. Pflugers Archiv : European journal of physiology 445(2):297–304.https://doi.org/10.1007/s00424-002-0931-9

Nakipova O, Averin A, Evdokimovskii E, Pimenov O, Kosarski L, Ignat'ev D, Anufriev A, Kokoz Y, Reyes S, Terzic A, Alekseev A (2017) Store-operated Ca2+ entry supports contractile function in hearts of hibernators. PloS one 12(5):e0177469. https://doi.org/10.1371/journal.pone.0177469

Mubagwa K, Lin W, Sipido K, Bosteels S, Flameng W (1997) Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: Role of intracellular sodium in rest-dependent potentiation of contraction. J Mol Cell Cardiol 29(3):977–989.https://doi.org/10.1006/jmcc.1996.0342

Mackiewicz U, Lewartowski B (2006) Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: Important role of sarcolemmal Ca2+-ATPase. J Physiol Pharmacol 57(1):3–15

Sprung J, Stowe D, Kampine J, Bosnjak Z (1994) Hypothermia modifies anesthetic effect on contractile force and Ca2+ transients in cardiac Purkinje fibers. The American journal of physiology 267(2 Pt 2):H725-33.https://doi.org/10.1152/ajpheart.1994.267.2.H725

Piper H, Hütter J, Spieckermann P (1984) Temperature dependence of nifedipine action. J Mol Cell Cardiol 16(3):277–280.https://doi.org/10.1016/s0022-2828(84)80593-3

Bers D, Chen-Izu Y (2015) Sodium and calcium regulation in cardiac myocytes: From molecules to heart failure and arrhythmia. J Physiol 593(6):1327–1329.https://doi.org/10.1113/JP270133

Isenberg G, Trautwein W (1975) Temperature sensitivity of outward current in cardiac Purkinje fibers. Evidence of electrogenicity of active transport. Pflugers Archiv : European journal of physiology 358(3):225–234.https://doi.org/10.1007/BF00587219

Cohen C, Fozzard H, Sheu S (1982) Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circulation research 50(5):651–662. https://doi.org/10.1161/01.res.50.5.651

Kuratomi S, Matsuoka S, Sarai N, Powell T, Noma A (2003) Involvement of Ca2+ buffering and Na+/Ca2+ exchange in the positive staircase of contraction in guinea-pig ventricular myocytes. Pflugers Archiv : European journal of physiology 446(3):347–355.https://doi.org/10.1007/s00424-003-1023-1

Wang S, Huang Y, Liu K, Zhou Z (1997) Dependence of myocardial hypothermia tolerance on sources of activator calcium. Cryobiology 35(3):193–200.https://doi.org/10.1006/cryo.1997.2040

Kaspar S, Pelzer D (1995) Modulation by stimulation rate of basal and cAMP-elevated Ca2+ channel current in guinea pig ventricular cardiomyocytes. J Gen Physiol 106(2):175–201. https://doi.org/10.1085/jgp.106.2.175

Bates S, Gurney A (1999) Use-dependent facilitation and depression of L-type Ca2+ current in guinea-pig ventricular myocytes: Modulation by Ca2+ and isoprenaline. Cardiovasc Res 44(2):381–389.https://doi.org/10.1016/s0008-6363(99)00216-3

Puglisi J, Yuan W, Bassani J, Bers D (1999) Ca(2+) influx through Ca(2+) channels in rabbit ventricular myocytes during action potential clamp: Influence of temperature. Circulation research 85(6):e7–e16.https://doi.org/10.1161/01.res.85.6.e7

Herve J, Yamaoka K, Twist V, Powell T, Ellory J, Wang L (1992) Temperature dependence of electrophysiological properties of guinea pig and ground squirrel myocytes. The American journal of physiology 263(1 Pt 2):R177–R184. https://doi.org/10.1152/ajpregu.1992.263.1.R177

Spencer C, Mörner S, Noble M, Seed W (1994) Influences of stimulation frequency and temperature on interval-force relationships in guinea-pig papillary muscles. Acta Physiol Scand 150(1):11–20.https://doi.org/10.1111/j.1748-1716.1994.tb09654.x

Bjørnstad H, Tande P, Refsum H (1993) Mechanisms for hypothermia-induced increase in contractile force studied by mechanical restitution and post-rest contractions in guinea-pig papillary muscle. Acta Physiol Scand 148(3):253–264.https://doi.org/10.1111/j.1748-1716.1993.tb09556.x

Zhou Z, Liu B, Dryden W, Wang L (1991) Cardiac mechanical restitution in active and hibernating Richardson's ground squirrel. The American journal of physiology 260(2 Pt 2):R353–R358.https://doi.org/10.1152/ajpregu.1991.260.2.R353

Moskvin A, Iaparov B, Ryvkin A, Solovyova O, Markhasin V (2015) Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating. Jetp Lett. 102(1):62–68. https://doi.org/10.1134/S002136401513010X

Suko J (1973) The effect of temperature on Ca 2+ uptake and Ca 2+ -activated ATP hydrolysis by cardiac sarcoplasmic reticulum. Experientia 29(4):396–398.https://doi.org/10.1007/BF01926742

Monasky M, Janssen P (2009) The positive force-frequency relationship is maintained in absence of sarcoplasmic reticulum function in rabbit, but not in rat myocardium. J Comp Physiol B 179(4):469–479.https://doi.org/10.1007/s00360-008-0331-3

Bluhm W, Kranias E, Dillmann W, Meyer M (2000) Phospholamban: A major determinant of the cardiac force-frequency relationship. American journal of physiology. Heart and circulatory physiology 278(1):H249-55.https://doi.org/10.1152/ajpheart.2000.278.1.H249

Janssen P, Stull L, Marbán E (2002) Myofilament properties comprise the rate-limiting step for cardiac relaxation at body temperature in the rat. American journal of physiology. Heart and circulatory physiology 282(2):H499-507. https://doi.org/10.1152/ajpheart.00595.2001

Valverde C, Mundiña-Weilenmann C, Said M, Ferrero P, Vittone L, Salas M, Palomeque J, Petroff M, Mattiazzi A (2005) Frequency-dependent acceleration of relaxation in mammalian heart: A property not relying on phospholamban and SERCA2a phosphorylation. J Physiol 562(Pt 3):801–813.https://doi.org/10.1113/jphysiol.2004.075432

Yard N, Chiesi M, Ball H (1994) Effect of cyclopiazonic acid, an inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase, on the frequency-dependence of the contraction-relaxation cycle of the guinea-pig isolated atrium. Br J Pharmacol 113(3):1001–1007. https://doi.org/10.1111/j.1476-5381.1994.tb17092.x