ОСОБЕННОСТИ ТРАНСПОРТА НУТРИЕНТОВ В ПИЩЕВАРИТЕЛЬНОМ ТРАКТЕ РЫБ
PDF

Ключевые слова

рыбы
кишечник
транспорт нутриентов
механизмы
особенности

Аннотация

 В обзоре в сжатой форме приведены сведения о механизмах транспорта белков, липидов и углеводов в кишечнике рыб. Описаны механизмы макро- и микромолекулярного транспорта. Особое внимание уделено различиям некоторых механизмов микромолекулярного транспорта пептидов, аминокислот и гексоз, а также кранио-каудальных градиентов транспорта у рыб и млекопитающих. Показано, что транспортные белки появляются на самых ранних этапах онтогенеза рыб - до перехода личинок на экзогенное питание. Анализируются причины различий транспортных систем кишечника рыб и млекопитающих.

https://doi.org/10.31857/S0044452921020030
PDF

Литература

Уголев A.M. (Ред.) Мембранный гидролиз и транспорт. Новые данные и гипотезы. Л.: Наука. 1986. [Ugolev A.M. (Ed.) Membrane hydrolysis and transport. New data and hypotheses. L.: Nauka. 1986].

Метельский С.Т. Транспортные процессы и мембранное пищеварение в тонкой кишке. Электрофизиологическая модель. М.: Анахарсис. 2007. [Metelsky S.T. Transport processes and membrane digestion in the small intestine. Electrophysiological model. M .: Anacharsis. 2007.].

Уголев A.M., Кузьмина В.В. Пищеварительные процессы и адаптации у рыб. СПб.: Гидрометеоиздат. 1993. [Ugolev A.M., Kuzmina V.V. Digestive processes and adaptations in fish. SPb.: Gidrometeoizdat. 1993].

Кузьмина В.В. Физиолого-биохимические основы экзотрофии рыб. М.: Наука. 2005. [ Kuzmina V.V. Physiological and biochemical bases of fish exotrophy. M.: Nauka. 2005].

Кузьмина В.В. Процессы пищеварения у рыб. Новые факты и гипотезы. Ярославль: Филигрань. 2018. 299 с. [Kuzmina V.V. Digestive processes in fish. New facts and hypotheses. Yaroslavl: Filigree. 2018].

Ferraris R.P., Ahearn G.A. Sugar and amino acid transport in fish intestine. Comp. Biochem. Physiol. 77A(3):397–413. 1984.

Голованова И.Л., Кузьмина В.В. Транспорт нутриентов в кишечнике рыб. Биол. внутр. вод. 2:62–72. 1998. [Golovanova I.L., Kuzmina V.V. Transport of nutrients in the intestines of fish. Biol. int. water. 2: 62–72. 1998.].

Rønnestad I., Morais S.J. Digestion. In: Fish Larval Physiology (Eds. R.N. Finn, B.G. Kapoor). USA Enfield, New Hampshire: Science Publishers. 201–262. 2008.

Bakke A.M., Glover Ch., Krogdahl A. Feeding, digestion and absorption of nutrients. Fish physiology. The Multifunctional Gut of Fish (Eds. M.Grosell, A.P. Farrell, C.J. Brauner). Amsterdam, Boston: Acad. Press. 30:57–110. 2011.

Verri T., Barca A., Pisani P., Piccinni B. Storelli C. Romano A. Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J. Comp. Physiol. 187 (3): 395–462. https://dio.org/10.1007/s00360-016-1044-7. 2016.

Ferraris R.P. Does glucose uptake in marine fish intestines occur by active transport? . Pasif. Sci. 36(4):510–522.1982.

Collie N.L., Ferraris R.P. Nutrient fluxes and regulation in fish intestine. Metabolic Biochemistry. Biochemistry and Molecular Biology of Fishes Series (Eds P.W.Hochachka and T.P. Mommsen). Amsterdam: Elsevier Science. 4: 221–239. 1995.

Verri T., Kottra G., Romano A., Tiso N., Peric M., Maffia M., Boll M., Argenton F., Daniel H., Storelli C. Molecular and functional characterization of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Letters. 549:115–122. 2003.

Con P., Nitzan T., Slosman T., Harpaz S., Cnaani A. Peptide Transporters in the Primary Gastrointestinal Tract of Pre-Feeding Mozambique Tilapia Larva. Front. Physiol. https://doi.org/10.3389/fphys.2019.00808. 2019.

Ash R., McLean E. Intact protein absorption in teleost: Compararative consideration. Arсh. Int. Physiol. Biochem. 97(5): 51 –70. 1989.

Sire M.-F., Dorin D., Vernier J.-M. Intestinal absorption of macromolecular proteins in rainbow trout. Aquacult. 100:234–235. 1992.

Bakke-McKellep A.M., Nordrum S., Krogdahl Å., Buddington R. K. Absorption of glucose, amino acids, and dipeptides by the intestines of Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 22:33–44. 2000.

Concha M.I., Santander C.N., Villanueva J., Amthauer R. Specific binding of the endocytosis tracer horseradish peroxidase to intestinal fatty acid-binding protein (I-FABP) in apical membranes of carp enterocytes. J. Exp. Zool. 293:541–550. 2002.

Valle A.Z, Iriti M., Faoro F., Berti C., Ciappellano S. In vivo prion protein intestinal uptake in fish. Acta Pathol. Microbiol. Immunol. Scand. V:173–180. 2008.

Deplano M., Connes R., Diaz J.P., Barnabe G. Variation in the absorption of macromolecular protein in larvae of the sea bass (Dicentrarchus labrax) during transition to the exotrophic phase . Mar. Biol. 110:29–36. 1991.

Thamotharan M., Gomme J., Zonno V., Maffia M., Storelli C., Ahearn G.A. Electrogenic, proton-coupled, intestinal dipeptide transport in herbivorous and carnivorous teleosts. Amer. J. Physiol. 270: R939–R947. 1996. https://doi.org/10.1152/ajpregu. 270.5.R939.1996.

Уголев А.М., Кузьмина В.В., Рощина Г.М., Смирнова Л.Ф., Голованова И.Л., Груздков А.А. Характеристика мембранного гидролиза и транспорта у рыб. Изв. АН СССР. Сер. биол. 3:341–349. 1989. [Ugolev A.M., Kuzmina V.V., Roshchina G.M., Smirnova L.F., Golovanova I.L., Gruzdkov A.A. Characteristics of membrane hydrolysis and transport in fish. Izv. Academy of Sciences of the USSR. Ser. biol. 3:341–349. 1989. (In Russ.)].

Boge G., Rigal A., Peres G. Rates of in vivo intestinal absorption of glycine and glycylglycine by rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 69 (3):455–459.1981.

Vilella S., Ahearn G.A., Cassano G., Storelli C. Na-dependent L-proline transport by ell intestinal brush-border membrane vesicles. Amer. J. Physiol. 255(4)Pt. 2: R648-R653. 1988.

Farmafarmaian A.A., Ross A., Mazal A. In vivo intestinal absorption of sugar in the toadfish (marine teleost, Opsanus tau). Biol. Bull. 142: 427–445. 1972.

Кузьмина В.В., Извекова Г.И. Механизмы транспорта углеводов в кишечнике пресноводных костистых рыб. Биол. внутр. вод. Информ. бюлл. 79: 42–44. 1988. [Kuzmina V.V., Izvekova G.I. Mechanisms of carbohydrate transport in the intestines of freshwater teleost fishes. Biol. Internal water. Inform.bull. 79: 42–44 1988 (In Russ.)].

Storelli C., Vilella S., Romano A., Maffia M., Cassano G. Brush-border amino acid transport mechanisms in carnivorous eel intestine. Am. J. Physiol. 257:R506–R510. 1989.

Boge G., Roche H., Balocco C. Amino acid transport by intestinal brush border vesicles of a marine fish, Boops salpa. Comp. Biochem. Physiol. 131B: 19–26. 2002.

Verri T., Romano A., Barca A., Kottra G., Daniel, H. Storelli C. Transport of di- and tripeptides in teleost fish intestine. Aquacult. Res. 41: 641–653. https://doi.org/10.1111/j.1365-2109.2009.02270.x. 2010.

Romano A., Kottra G., Barca A., Tiso N., Maffia M., Argenton F., Daniel H., Storelli C., Verri T. High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis. Physiol. Genom. 24:207–217. 2006.

Gonçalves A.F., Castro L.F.C., Pereira-Wilson C., Coimbra J., Wilson J.M. Is there a compromise between nutrient uptake and gas exchange in the gut of Misgurnus anguilli caudatus, an intestinal air-breathing fish? Comp. Biochem. Physiol. 2D:345–355. 2007.

Hakim Y., Harpaz S., Uni Z. Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following feed deprivation. Aquacult. 290:110–115. 2009.

Sangaletti R., Terova G., Peres A., Bossi E., Cora S., Saroglia M. Functional expression of the oligopeptide transporter PepT1 from the sea bass (Dicentrarchus labrax). Pflugers Arch. (Eur. J. Physiol.). 459:47–54. 2009.

Terova G., Cora S., Verri T., Rimoldi S., Bernardini G., Saroglia M. Impact of feed availability on PepT1 mRNA expression levels in sea bass (Dicentrarchus labrax). Aquacult. 294:288–299. 2009.

Bakke S., Jordal A.-E.O., Gómez-Requeni P., Verri T., Kousoulaki K., Aksnes A., Rønnestad I. Dietary protein hydrolysates and free amino acids affect the spatial expression of peptide transporter PepT1 in the digestive tract of Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. 156 B:48–55. 2010. https://doi.org/10.1016/j.cbpb.2010.02.002.

Ostaszewska T., Kamaszewski M., Grochowski P., Dabrowski K., Verri T., Aksakal E., Muszynska M., Nowak Z., Dobosz S. The effect of peptide absorption on PepT1 gene expression, and digestive system hormones in rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Comp. Biochem. Physiol. 155A:107–114. 2010. https://doi.org/10.1016/j.cbpa.2009.10.017

Ahn H., Yamada Y., Okamura A., Tsukamoto K., Kaneko T.,Watanabe S. Intestinal expression of peptide transporter 1 (PEPT 1) at different life stages of Japanese eel, Anguilla japonica . Fish Physiol. Biochem. 166B(2):157-164. 2013. https://doi.org/10.1016/j.cbpb.2013.08.005PMID:23994609

Vilella S., Ahearn G.A., Cassano G., Storelli C. How many Na+-dependent carriers for L-alanine and L-proline in the eel intestine? Studies with brush border membrane vesicles. Biochim. Biophys. Acta. 984:188–192. 1989.

Glover C.N., Bucking С., Wood C.M. Characterization of L-alanine and glycine absorption across the gut of an ancient vertebrate. Comp. Biochem. Physiol. 166B(2):157–164. 2011.

Glover C.N., Wood C.M. Histidine absorption across apical surfaces of freshwater rainbow trout intestine: mechanistic characterization and the influence of copper. J. Membr. Biol. 221:87–95. 2008.

Applebaum S.L., Rоnnestad I. Absorption, assimilation and catabolism of individual free amino acids by larval Atlantic halibut (Hippoglossus hippoglossus). Aquacult. 230:313–322. 2004. doi:10.1016/S0044-8486(03)00406-X

Ferraris R.P. Dietary and developmental regulation of intestinal sugar transport. Biochem. J. 360:265–276. 2001.

Bachelor D.J, Al-Rammahi M., Moran A.W., Brand J.G., Li X., Haskins M., German A.J. Shirazi-Beechey S.P. Sodium/glucose cotransporter-1, sweet receptor, and disaccaridase expression in the intestine of the domestic dog and cat: Two species of different dietary habit. Amer. J. Physiology. Reg., Integr., Comp. Physiol. 300:R67–R75. 2011. https://doi.org/10.1152/ajpregu.00262.2010.

Gruzdkov A.A., Gromova L.V., Grefner, N.M., Komissarchik, Yu.Y. Kinetics and mechanisms of glucose absorption in the rat small intestine under physiological conditions. Biophys. Chem. 3:191-200. 2012. https://doi.org/10.4236/jbpc.2012.32021.

Stokes R., Fromm P. Clucose absorption and metabolism by the gut of rainbow trout. Comp. Biochem. Physiol. 13:53-69. 1964.

Голованова И.Л. Особенности транспорта углеводов в различных частях кишечника леща (Abramis brama) и карпа (Cyprinus carpio). Вопр. ихтиол. 32(3):124–132. 1992. [Golovanova I.L. Characteristics of carbohydrate transport in different parts of the intestines of bream (Abramis brama) and carp (Cyprinus carpio). J. Ichthyol. 33:26–35. 1993. (In Russ)].

Sala-Rabanal M., Gallardo M.A., Sanchez J., Planas, J.M. Na-dependent D-glucose transport by intestinal brush border membrane vesicles from gilthead sea bream (Sparus aurata). J. Membr. Biol. 201:85–96. 2004.

Hall J.R., Short C.E., Driedzic W R. Sequence of Atlantic cod (Gadus morhua) GLUT4, GLUT2, and GPDH: developmental stage expression, tissue expression and relationship to starvation-induced changes in blood glucose. J. Exp. Biol. 209:4490–4502. 2006.

Cartier M., Buclon M., Robinson T.W.L. Preliminary studies on the characteristics of phenylalanine and methyl-glucoside transport in the tench intestine in vitro. Compar. Biochem. Physiol. 62A:363-370. 1979.

Sastry K.V., Garg V.K. Agrawal V.P. Effect of inhibitors on Na+-dependent D-glucose transport in the small intestine of two teleost fishes. Indian J. Exp. Biol. 15:661–662. 1977.

Buddington R.K., Chen J.W. Diamond J.M. Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J. Physiol. 393:261–281. 1987.

Ahearn G.A., Behnke R.D., Zonno V., Storelli C. Kinetic heterogeneity of Na-D-glucose cotransport in teleost gastrointestinal tract. Am. J. Physiol. 263:R1018–R1023. 1992.

Hall J.R., Short C.E., Driedzic W R. Sequence of Atlantic cod (Gadus morhua) GLUT4, GLUT2, and GPDH: developmental stage expression, tissue expression and relationship to starvation-induced changes in blood glucose. J. Exp. Biol. 209:4490–4502. 2006.

Deng D., Yan X., Zhao W., Qin C.,Yang G., Nie G. Glucose transporter 2 in common carp (Cyprinus carpio L.): molecular cloning, tissue expression, and the responsiveness to glucose, insulin, and glucagon. Fish Physiol. Biochem. 2020. https://doi.org/10.1007/s10695-020-00782-z.

Zhao W., Qin C., Yang G., Zhao W., Qin C., Yang G., Yan X., Meng X., Yang L., Lu R., Deng D., Niu M., Nie G. Expression of glut2 in response to glucose load, insulin and glucagon in grass carp (Ctenophcuyngodon idellus). Comp. Biochem. Physiol. Part B. 2020. 239:110351. https://doi.org/10.1016/j.cbpb.2019.110351

Tocher D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11:107–184. 2003.

Kapoor B.C., Smit H., Verighina I.A. The alimentary canal and digestion in teleosts. Advances in marine biology. New York. 13:109–239. 1975.

Caballero M.J., Izquierdo M.S., Kjørsvik E., Montero D., Socorro J., Ferna´ndezA.J., Rosenlund G. Morphological aspects of intestinal cells from gilthead seabream (Sparus aurata) fed diets containing different lipid sources. Aquacult. 225:325–340. 2003.

Ezeasor D.N., Stokoe W.M. Light and electron microscopic studies on the absorptive cells of the intestine caeca and rectum of the adult rainbow trout, Saimo gairdneri Rich. J. Fish Biol. 18(5):527–544. 1981.

Titus E. Short-chain fatty acid transport in intestinal brush border membrane vesicles of the african tilapia Oreochromis mossambicus. Pacif. Sci. 42(1):134–135. 1988.

Sire M.-F., Lutton C., Vernier J.-M. New views on intestinal absorption of lipids in teleostean fishes: an ultrastructural and biochemical study in the rainbow trout. J. Lipid Res. 22:81–94. 1981.

Ostos Garrido M.V., Nunez Torres M.V., Abaurrea Equisoaian M.A. Lipid absorption by enterocytes of the rainbow trout Onchorhyncus mykiss. Diet-induced changes in the endomembranous system. Aquacult. 110:156–174. 1993.

Hernandez-Blazquez F.J., Guerra R.R., Kfoury J.R., Bombonato P.P., Cogliati B., da Silva J.R.M.C. Fat absorptive processes in the intestine of the Antarctic fish Notothenia coriiceps (Richardson, 1844). Polar Biol. 29:831–836. 2006.

Olsen R. E. Myklebust R., KainoT., Ringø E. Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol. Biochem. 21:35–44. 1999.

Røsjø C., Nordrum S., Olli J.J., Krogdahl Å., Ruyter B., Holm H. Lipid digestibility and metabolism in Atlantic salmon (Salmo salar) fed medium-chain triglycerides. Aquacult. 190:65–76. 2000.

Denstadli V., Vegusdal,A., Krogdahl Å., Bakke-McKellep A.M., Berge G.M., Holm H., Hillestad M., Ruyter B. Lipid absorption in different segments of the gastrointestinal tract of Atlantic salmon (Salmo salar L.). Aquacul. 240:385–398. 2004.

Oxley A., Jutfel, F., Sundell K., Olsen R. E. Sn-2-monoacylglycerol, not glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.) intestine. Comp. Biochem. Physiol. 146B:115–123. 2007.

André M, Ando S, Ballagny C Durlait M., Poupard G., Briançon C., Babin P.J. Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Inter. J. Devel. Biol. 44:249–252. 2000.

Esteves A., Knoll-Gellida A., Canclini L., Silvarrey M.C., André M., Babin P.J. Fatty acid-binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei. J. Lipid Res. 57(2):219-332. 2016. https://doi.org/10.1194/jlr.M062232.

Shephard K. L. Functions for fish mucus. Rev. Fish Biol. Fisher. V. 4. P. 401–429. 1994.

Krogdahl Å., Nordrum S., Sørensen M., Brudeseth, L., Røsjø C. Effects of diet composition on apparent nutrient absorption along the intestinal tract and of subsequent fasting on mucosal disaccharidase activities and plasma nutrient concentration in Atlantic salmon Salmo salar L. Aquacult. Nutr. 5:121–133. 1999.

Nordrum S., Krogdahl Å., Røsjø C., Olli J. J., Holm H. Effects of methionine, cysteine and medium chain tryglycerides on nutrient digestibility, absorption of amino acids along the intestinal tract and nutrient retention in Atlantic salmon (Salmo salar L.) under pair-feeding regime. Aquacult. 186:341–360. 2000.

Jutfelt F., Olsen R.E., Bjőrnsson B.T., Sundell K. Parr–smolt transformation and dietary vegetable lipids affect intestinal nutrient uptake, barrier function and plasma cortisol levels in Atlantic salmon. Aquacult. 273:298–311. 2007.

Buddington R.K., Doroshov S.I. Development of digestive secretions in white sturgeon juveniles (Acipenser transmontanus). Compar. Biochem. Physiol. 83A(2)233–:238. 1986.

Verri T., Rimoldi S., Bernardini G., Saroglia M. Impact of feed availability on PEPT1 mRNA expression levels in sea bass (Dicentrarchus labrax). Aquacult. 294:288–299. 2009. https://doi.org/10.1016/j.aquaculture.2009.06.014