ГИППОКАМПАЛЬНЫЙ НЕЙРОГЕНЕЗ ПРИ ЭПИЛЕПТОГЕНЕЗЕ
PDF

Ключевые слова

нейрогенез, эпилептогенез, гиппокамп, пролиферация

Как цитировать

Наслузова, Е. В., Глазова, М. В., & Черниговская, Е. В. (2018). ГИППОКАМПАЛЬНЫЙ НЕЙРОГЕНЕЗ ПРИ ЭПИЛЕПТОГЕНЕЗЕ. Российский физиологический журнал им. И. М. Сеченова, 104(10). https://doi.org/10.7868/S0869813918100039

Аннотация

В обзоре представлены данные, касающиеся особенностей реорганизации гиппокампа, связанных с нарушением нейрогенеза при эпилептиформных состояниях различной этиологии. Приведены данные о влиянии судорожных состояний различной степени тяжести и частоты на уровень пролиферации, миграцию и встраивание новообразованных клеток в гиппокампальную нейрональную сеть, а также  описаны аномалии вновь образованных гранулярныхиклеток. В этой статье мы делаем акцент на возможных объяснениях существующих противоречий в оценке значения нейрогенеза при эпилепсии.

https://doi.org/10.7868/S0869813918100039
PDF

Литература

Altman J. Are new neurons formed in the brains of adult mammals? Science. 135 (3509): 1127--1128. 1962.

Rakic P., Nowakowski R. S. The time of origin of neurons in the hippocampal region of the rhesus monkey. J. Comp. Neurol. 196 (1): 99--128. 1981.

Eriksson P. S., Perfilieva E., Bjork-Eriksson T., Alborn A.-M., Nordborg C., Peterson D. A.,Gage F. H. Neurogenesis in the adult human hippocampus. Nat. Med. 4 (11): 1313-- 1317. 1998.

Spalding K. L., Bhardwaj R. D., Buchholz B. A., Druid H., Frisen J. Retrospective birth dating of cells in humans. Cell. 122 (1): 133--143. 2005.

Goncalves J. T., Schafer S. T., Gage F. H. Adult neurogenesis in the hippocampus: From stem cells to behavior. Cell. 167 (4): 897--914. 2016.

Duman R. S., Li N. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367 (1601): 2475--2484. 2012.

Gil J. M., Mohapel P., Araujo I. M., Popovic N., Li J. Y., Brundin P., Petersen A. Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiol. Dis. 20 (3): 744--751. 2005.

Hoglinger G. U., Rizk P., Muriel M. P., Duyckaerts C., Oertel W. H., Caille I., Hirsch E. C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci. 7 (7): 726--735. 2004.

Jacobs B. L., van Praag H.,Gage F. H. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry. 5 (3): 262--269. 2000.

Peng L., Bonaguidi M. A. Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease. Am. J. Pathol. 188 (1): 23--28. 2018.

Clelland C. D., Choi M., Romberg C., Clemenson G. D., jr., Fragniere A., Tyers P., Jessberger S., Saksida L. M., Barker R. A., Gage F. H., Bussey T. J. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 325: 210--213. 2009.

Lazarov O., Mattson M. P., Peterson D. A., Pimplikar S. W., van Praag H. When neurogenesis encounters aging and disease. Trends Neurosci. 33: 569--579. 2010.

Jin K., Peel A. L., Mao X. O., Xie L., Cottrell B. A., Henshall D. C., Greenberg D. A. Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl. Acad. Sci. USA. 101(1): 343--347. 2004.

Mu Y., Gage F. H. Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol. Neurodegener. 6: 85. 2011.

Margerison J. H., Corsellis J. A. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain. 89 (3): 499--530. 1966.

Sutula T., He X. X., Cavazos J., Scott G. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science. 239 (4844): 1147--1150. 1988.

Mello L. E., Cavalheiro E. A., Tan A. M., Kupfer W. R., Pretorius J. K., Babb T. L., Finch D. M. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia. 34 (6): 985--995. 1993.

Gray W. P., Sundstrom L. E. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res. 790 (1--2): 52--59. 1998.

Parent J. M., Yu T. W., Leibowitz R. T., Geschwind D. H., Sloviter R. S., Lowenstein D. H. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17 (10): 3727--3738. 1997.

Pekcec A., Lupke M., Baumann R., Seifert H., Potschka H. Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression. Hippocampus. 21 (8): 866--876. 2011.

Huttmann K., Sadgrove M., Wallraff A., Hinterkeuser S., Kirchhoff F., Steinhauser C., Gray W. P. Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur. J. Neurosci. 18 (10): 2769-- 2778. 2003.

Jessberger S., Rцmer B., Babu H., Kempermann G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp. Neurology. 196 (2): 342--351. 2005.

Overstreet-Wadiche L. S., Bromberg D. A., Bensen A. L., Westbrook G. L. Seizures accelerate functional integration of adult-generated granule cells. J. Neurosci. 26 (15): 4095--4103. 2006.

Hattiangady B., Rao M. S., Shetty A. K. Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol. Dis. 17 (3): 473--490. 2004.

Jung K.-H., Chu K., Kim M., Jeong S.-W., Song Y.-M., Lee S.-T., Kim J.-Y., Lee S. K., Roh J.-K. Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur. J. Neurosci. 19 (12): 3219--3226. 2004.

Kleene R., Schachner M. Glycans and neural cell interactions. Nat. Rev. Neurosci. 5 (3): 195--208. 2004.

Pekcec A., Muhlenhoff M., Gerardy-Schahn R., Potschka H. Impact of the PSA-NCAM system on pathophysiology in a chronic rodent model of temporal lobe epilepsy. Neurobiol. Dis. 27 (1): 54--66. 2007.

Cho K. O., Lybrand Z. R., Ito N., Brulet R., Tafacory F., Zhang L., Good L., Ure K., Kernie S. G., Birnbaum S. G., Scharfman H. E., Eisch A. J., Hsieh J. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 6: 6606. 2015.

Iyengar S. S., LaFrancois J. J., Friedman D., Drew L. J., Denny C. A., Burghardt N. S., Wu M. V., Hsieh J., Hen R., Scharfman H. E. Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp. Neurol. 264: 135--149. 2015.

Sierra A., Martin-Suбrez S., Valcбrcel-Martнn R., Pascual-Brazo J., Aelvoet S.-A., Abiega O., Deudero J. J., Brewster A. L., Bernales I., Anderson A. E. Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell. 16 (5): 488--503. 2015.

Hsu D. The dentate gyrus as a filter or gate: a look back and a look ahead. Progr. Brain Res. 163: 601--613. 2007.

Lawrence J. J., McBain C. J. Interneuron diversity series: containing the detonation-feedforward inhibition in the CA3 hippocampus. Trends Neurosci. 26 (11): 631--640. 2003.

Heinemann U., Beck H., Dreier J. P., Ficker E., Stabel J., Zhang C. L. The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res. (Suppl. 7): 273--280. 1992.

Lothman E. W., Stringer J. L., Bertram E. H. The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res. (Suppl. 7): 301--313. 1992.

Danzer S. C. Depression, stress, epilepsy and adult neurogenesis. Exp. Neurol. 233 (1): 22--32. 2012.

Dashtipour K., Tran P. H., Okazaki M. M., Nadler J. V., Ribak C. E. Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer. Brain Res. 890 (2): 261--271. 2001.

Scharfman H. E., Goodman J. H., Sollas A. L. Granule-like neurons at the Hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: Functional implications of seizure-induced neurogenesis. J. Neurosci. 20 (16): 6144--6158. 2000.

Vivar C., van Praag H. Functional circuits of new neurons in the dentate gyrus. Front. Neural. Circuits. 7: 15. 2013.

Bielefeld P., van Vliet E. A., Gorter J. A., Lucassen P. J., Fitzsimons C. P. Different subsets of newborn granule cells: a possible role in epileptogenesis? Eur. J. Neurosci. 39 (1): 1--11. 2014.

Gulyaeva N. V. Aberrant neurogenesis in adult epileptic brain: Compensatory or pathologic. J. Neurochem. 4 (2): 84--89. 2010.

Scharfman H. E., Sollas A. L., Goodman J. H. Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus. Neuroscience. 111 (1): 71--81. 2002.

Hester M. S., Danzer S. C. Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J. Neurosci. 33 (21): 8926--8936. 2013.

Pun R. Y., Rolle I. J., Lasarge C. L., Hosford B. E., Rosen J. M., Uhl J. D., Schmeltzer S. N., Faulkner C., Bronson S. L., Murphy B. L., Richards D. A., Holland K. D.,Danzer S. C. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron. 75 (6): 1022--1034. 2012.

Gorter J. A., van Vliet E. A., Aronica E., Lopes da Silva F. H. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur. J. Neurosci. 13 (4): 657--669. 2001.

Okazaki M. M., Evenson D. A., Nadler J. V. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J. Comp. Neurol. 352 (4): 515--534. 1995.

Represa A., Niquet J., Pollard H., Ben-Ari Y. Cell death, gliosis, and synaptic remodeling in the hippocampus of epileptic rats. J. Neurobiol. 26 (3): 413--425. 1995.

Buckmaster P. S., Dudek F. E. In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J. Neurophysiol. 81 (2): 712--721. 1999.

Sloviter R. S. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci. Lett. 137 (1): 91--96. 1992.

Romcy-Pereira R. N., Garcia-Cairasco N. Hippocampal cell proliferation and epileptogenesis after audiogenic kindling are not accompanied by mossy fiber sprouting or fluoro-jade staining. Neuroscience. 119 (2): 533--546. 2003.

Seress L., Mrzljak L. Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations. Brain Res. 405 (1): 169--174. 1987.

Shapiro L. A., Korn M. J., Ribak C. E. Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience. 136 (3): 823--831. 2005.

Dashtipour K., Wong A. M., Obenaus A., Spigelman I., Ribak C. E. Temporal profile of hilar basal dendrite formation on dentate granule cells after status epilepticus. Epilepsy Res. 54 (2--3): 141--151. 2003.

Ribak C. E., Tran P. H., Spigelman I., Okazaki M. M., Nadler J. V. Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. J. Comp. Neurol. 428 (2): 240--253. 2000.

Murphy B. L., Hofacer R. D., Faulkner C. N., Loepke A. W., Danzer S. C. Abnormalities of granule cell dendritic structure are a prominent feature of the intrahippocampal kainic acid model of epilepsy despite reduced postinjury neurogenesis. Epilepsia. 53 (5): 908--921. 2012.

Jakubs K., Nanobashvili A., Bonde S., Ekdahl C. T., Kokaia Z., Kokaia M., Lindvall O. Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron. 52 (6): 1047--1059. 2006.

Wood J. C., Jackson J. S., Jakubs K., Chapman K. Z., Ekdahl C. T., Kokaia Z., Kokaia M., Lindvall O. Functional integration of new hippocampal neurons following insults to the adult brain is determined by characteristics of pathological environment. Exp. Neurol. 229 (2): 484--493. 2011.

Jafari M., Soerensen J., Bogdanovic R. M., Dimou L., Gotz M., Potschka H. Long-term genetic fate mapping of adult generated neurons in a mouse temporal lobe epilepsy model. Neurobiol. Dis. 48 (3): 454--463. 2012.

Parent J. M., Janumpalli S., McNamara J. O., Lowenstein D. H. Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci. Lett. 247 (1): 9--12. 1998.

Mohapel P., Ekdahl C. T., Lindvall O. Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol. Dis. 15 (2): 196--205. 2004.

Hung Y. W., Yang D. I., Huang P. Y., Lee T. S., Kuo T. B., Yiu C. H., Shih Y. H., Lin Y. Y. The duration of sustained convulsive seizures determines the pattern of hippocampal neurogenesis and the development of spontaneous epilepsy in rats. Epilepsy Res. 98 (2--3): 206--215. 2012.

Babb T., Kupfer W., Pretorius J., Crandall P., Levesque M. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience. 42 (2): 351--363. 1991.

Murphy B. L., Pun R. Y., Yin H., Faulkner C. R., Loepke A. W., Danzer S. C. Heterogeneous integration of adult-generated granule cells into the epileptic brain. J. Neurosci. 31 (1): 105--117. 2011.

Zhan R. Z., Timofeeva O., Nadler J. V. High ratio of synaptic excitation to synaptic inhibition in hilar ectopic granule cells of pilocarpine-treated rats. J. Neurophysiol. 104 (6): 3293--3304. 2010.

Radley J. J., Jacobs B. L. 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res. 955 (1--2): 264--267. 2002.