РОЛЬ ТРОМБОЦИТОВ В ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ
PDF

Ключевые слова

тромбоциты
рак
противоопухолевая терапия
тромбоцитоз
опухолевый ангиогенез
антитромбоцитарная терапия
микрочастицы

Как цитировать

Шпакова, В. С., & Гамбарян, С. П. (2020). РОЛЬ ТРОМБОЦИТОВ В ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ. Российский физиологический журнал им. И. М. Сеченова, 106(10), 1209–1237. https://doi.org/10.31857/S0869813920100106

Аннотация

Тромбоциты играют ключевую роль в гемостазе, участвуют в процессах иммунного ответа, воспаления, ангиогенеза и регенерации тканей в организме. С другой стороны, тромбоциты могут способствовать развитию различных патологических процессов, обусловленных образованием тромбов в сосудах (инфаркты, инсульты), а также опухолевых заболеваний. Тромбоциты могут напрямую взаимодействовать с раковыми клетками в кровотоке и участвовать в метастазировании, ангиогенезе и росте опухоли. За последние годы накопилось значительное количество данных, посвящённых роли тромбоцитов в развитии опухолевых заболеваний. Эти данные требуют систематизации и тщательного анализа, так как значение тромбоцитов в развитии рака может преувеличиваться. В данной работе представлены основные актуальные вопросы, касающиеся роли тромбоцитов в развитии онкологических заболеваний. Помимо этого, рассмотрено значение антитромбоцитарной терапии и ограничения её применения в лечении опухолей, а также использование тромбоцитов в целях диагностики и таргетной доставки препаратов в противоопухолевой терапии.

https://doi.org/10.31857/S0869813920100106
PDF

Литература

Quach M.E., Chen W., Li R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood. 131(14):1512-1521. 2018.

Mackman N. Triggers, targets and treatments for thrombosis. Nature. 451(7181):914-918. 2008.

Franco A.T., Corken A., Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 126(5):582-588. 2015.

Cooke N.M., Egan K., McFadden S., Grogan L., Breathnach O.S., O'Leary J., Hennessy B.T., Kenny D. Increased platelet reactivity in patients with late-stage metastatic cancer. Cancer Med. 2(4):564-570. 2013.

Trousseau A. Clinique médicale de l'Hôtel-Dieu de Paris. Paris ; New York : Baillière. 1865.

Metharom P., Falasc1a M., Berndt M.C. The History of Armand Trousseau and Cancer-Associated Thrombosis. Cancers (Basel). 11(2):158. 2019.

Menter D.G., Tucker S.C., Kopetz S., Sood A.K., Crissman J.D., Honn K.V. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev. 33(1):231-269. 2014.

Edwards E.A. Migrating thrombophlebitis associated with carcinoma. N. Engl. J. Med. 240(26):1031-1035. 1949.

Womack W.S.,Castellano C.J. Migratory thrombophlebitis associated with ovarian carcinoma. Am. J .Obstet. Gynecol. 63(2):467-469. 1952.

McKay D.G.,Wahle G.H. Jr. Disseminated thrombosis in colon cancer. Cancer. 8(5):970-978. 1955.

Nusbacher J. Migratory Venous Thrombosis and Cancer. N. Y. State J. Med. 64:2166-2173. 1964.

Warren B.A.,Vales O. The adhesion of thromboplastic tumour emboli to vessel walls in vivo. Br. J. Exp. Pathol. 53(3):301-313. 1972.

Hilgard P. The role of blood platelets in experimental metastases. Br. J. Cancer. 28(5):429-435. 1973.

Gasic G.J., Gasic T.B., Galanti N., Johnson T.,Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int. J. Cancer. 11(3):704-718. 1973.

Warren B.A. Environment of the blood-borne tumor embolus adherent to vessel wall. J. Med. 4(3):150-177. 1973.

Crissman J.D., Hatfield J.S., Menter D.G., Sloane B., Honn K.V. Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res. 48(14):4065-4072. 1988.

Menter D.G., Hatfield J.S., Harkins C., Sloane B.F., Taylor J.D., Crissman J.D., Honn K.V. Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clin. Exp. Metastasis. 5(1):65-78. 1987.

Honn K.V., Tang D.G., Crissman J.D. Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Rev. 11(3-4):325-351. 1992.

Egan K., Crowley D., Smyth P., O'Toole S., Spillane C., Martin C., Gallagher M., Canney A., Norris L., Conlon N., McEvoy L., Ffrench B., Stordal B., Keegan H., Finn S., McEneaney V., Laios A., Ducree J., Dunne E., Smith L., Berndt M., Sheils O., Kenny D., O'Leary J. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells. PLoS One. 6(10):e26125. 2011.

Lowe K.L., Navarro-Nunez L.,Watson S.P. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb. Res. 129 Suppl 1:S30-S37. 2012.

Donati M.B., Falanga A. Pathogenetic mechanisms of thrombosis in malignancy. Acta Haematol. 106(1-2):18-24. 2001.

Janowska-Wieczorek A., Wysoczynski M., Kijowski J., Marquez-Curtis L., Machalinski B., Ratajczak J., Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer. 113(5):752-760. 2005.

Mezouar S., Mege D., Darbousset R., Farge D., Debourdeau P., Dignat-George F., Panicot-Dubois L., Dubois C. Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin. Oncol. 41(3):346-358. 2014.

Palumbo J.S., Talmage K.E., Massari J.V., La Jeunesse C.M., Flick M.J., Kombrinck K.W., Jirouskova M., Degen J.L. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 105(1):178-185. 2005.

Wojtukiewicz M.Z., Sierko E., Hempel D., Tucker S.C., Honn K.V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 36(2):249-262. 2017.

Cho M.S., Noh K., Haemmerle M., Li D., Park H., Hu Q., Hisamatsu T., Mitamura T., Mak S.L.C., Kunapuli S., Ma Q., Sood A.K., Afshar-Kharghan V. Role of ADP receptors on platelets in the growth of ovarian cancer. Blood. 130(10):1235-1242. 2017.

Mezouar S., Darbousset R., Dignat-George F., Panicot-Dubois L., Dubois C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int. J. Cancer. 136(2):462-475. 2015.

Wojtukiewicz M.Z., Hempel D., Sierko E., Tucker S.C., Honn K.V. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev. 36(2):305-329. 2017.

Haemmerle M., Stone R.L., Menter D.G., Afshar-Kharghan V., Sood A.K. The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell. 33(6):965-983. 2018.

Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M., Thornton E.E., Headley M.B., David T., Coughlin S.R., Krummel M.F., Leavitt A.D., Passegue E., Looney M.R. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 544(7648):105-109. 2017.

Machlus K.R., Italiano J.E. Jr. The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol. 201(6):785-796. 2013.

Grozovsky R., Giannini S., Falet H., Hoffmeister K.M. Regulating billions of blood platelets: glycans and beyond. Blood. 126(16):1877-1884. 2015.

Smolenski A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J. Thromb. Haemost. 10(2):167-176. 2012.

Bye A.P., Unsworth A.J., Gibbins J.M. Platelet signaling: a complex interplay between inhibitory and activatory networks. J. Thromb. Haemost. 14(5):918-930. 2016.

Andrews R.K., Shen Y., Gardiner E.E., Berndt M.C. Platelet adhesion receptors and (patho)physiological thrombus formation. Histol. Histopathol. 16(3):969-980. 2001.

Di Virgilio F., Chiozzi P., Ferrari D., Falzoni S., Sanz J.M., Morelli A., Torboli M., Bolognesi G., Baricordi O.R. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood. 97(3):587-600. 2001.

McGrath R.T., McRae E., Smith O.P., O'Donnell J.S. Platelet von Willebrand factor--structure, function and biological importance. Br. J. Haematol. 148(6):834-843. 2010.

Varga-Szabo D., Pleines I., Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 28(3):403-412. 2008.

Davi G., Patrono C. Platelet activation and atherothrombosis. N. Engl. J. Med. 357(24):2482-2494. 2007.

Heemskerk J.W., Mattheij N.J., Cosemans J.M. Platelet-based coagulation: different populations, different functions. J. Thromb. Haemost. 11(1):2-16. 2013.

Baaten C., Ten Cate H., van der Meijden P.E.J., Heemskerk J.W.M. Platelet populations and priming in hematological diseases. Blood Rev. 31(6):389-399. 2017.

Sharda A., Flaumenhaft R. The life cycle of platelet granules. F1000Res. 7:236. 2018.

Chen Y., Yuan Y., Li W. Sorting machineries: how platelet-dense granules differ from alpha-granules. Biosci. Rep. 38(5):1-9. 2018.

Hodge D.R., Hurt E.M., Farrar W.L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer. 41(16):2502-2512. 2005.

Kumari N., Dwarakanath B.S., Das A., Bhatt A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37(9):11553-11572. 2016.

Stone R.L., Nick A.M., McNeish I.A., Balkwill F., Han H.D., Bottsford-Miller J., Rupairmoole R., Armaiz-Pena G.N., Pecot C.V., Coward J., Deavers M.T., Vasquez H.G., Urbauer D., Landen C.N., Hu W., Gershenson H., Matsuo K., Shahzad M.M., King E.R., Tekedereli I., Ozpolat B., Ahn E.H., Bond V.K., Wang R., Drew A.F., Gushiken F., Lamkin D., Collins K., DeGeest K., Lutgendorf S.K., Chiu W., Lopez-Berestein G., Afshar-Kharghan V., Sood A.K. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366(7):610-618. 2012.

Wolber E.M., Jelkmann W. Interleukin-6 increases thrombopoietin production in human hepatoma cells HepG2 and Hep3B. J. Interferon Cytokine Res. 20(5):499-506. 2000.

Catani M.V., Savini I., Tullio V., Gasperi V. The "Janus Face" of Platelets in Cancer. Int. J. Mol. Sci. 21(3):1-23. 2020.

Suzuki A., Takahashi T., Nakamura K., Tsuyuoka R., Okuno Y., Enomoto T., Fukumoto M., Imura H. Thrombocytosis in patients with tumors producing colony-stimulating factor. Blood. 80(8):2052-2059. 1992.

Cheng J., Zeng Z., Ye Q., Zhang Y., Yan R., Liang C., Wang J., Li M., Yi M. The association of pretreatment thrombocytosis with prognosis and clinicopathological significance in cervical cancer: a systematic review and meta-analysis. Oncotarget. 8(15):24327-24336. 2017.

Gu D., Szallasi A. Thrombocytosis Portends Adverse Prognosis in Colorectal Cancer: A Meta-Analysis of 5,619 Patients in 16 Individual Studies. Anticancer Res. 37(9):4717-4726. 2017.

Gucer F., Moser F., Tamussino K., Reich O., Haas J., Arikan G., Petru E., Winter R. Thrombocytosis as a prognostic factor in endometrial carcinoma. Gynecol Oncol. 70(2):210-214. 1998.

Ghanavat M., Ebrahimi M., Rafieemehr H., Maniati M., Behzad M.M., Shahrabi S. Thrombocytopenia in solid tumors: Prognostic significance. Oncol Rev. 13(1):413. 2019.

Liebman H.A. Thrombocytopenia in cancer patients. Thromb. Res. 133. Suppl 2:S63-S69. 2014.

Weiss L. Metastatic inefficiency. Adv. Cancer Res. 54:159-211. 1990.

Nieswandt B., Hafner M., Echtenacher B., Mannel D.N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 59(6):1295-1300. 1999.

Aitokallio-Tallberg A.M., Viinikka L.U., Ylikorkala R.O. Increased synthesis of prostacyclin and thromboxane in human ovarian malignancy. Cancer Res. 48(9):2396-2398. 1988.

Yu L.X., Yan L., Yang W., Wu F.Q., Ling Y., Chen S.Z., Tang L., Tan Y.X., Cao D., Wu M.C., Yan H.X., Wang H.Y. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat. Commun. 5:5256. 2014.

Wicki A., Christofori G. The potential role of podoplanin in tumour invasion. Br. J. Cancer. 96(1):1-5. 2007.

May F., Hagedorn I., Pleines I., Bender M., Vogtle T., Eble J., Elvers M., Nieswandt B. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood. 114(16):3464-3472. 2009.

Mitrugno A., Williams D., Kerrigan S.W., Moran N. A novel and essential role for FcgammaRIIa in cancer cell-induced platelet activation. Blood. 123(2):249-260. 2014.

Hair G.A., Padula S., Zeff R., Schmeizl M., Contrino J., Kreutzer D.L., de Moerloose P., Boyd A.W., Stanley I., Burgess A.W., Rickles F.R. Tissue factor expression in human leukemic cells. Leuk. Res. 20(1):1-11. 1996.

O'Sullivan J.M., Preston R.J.S., Robson T., O'Donnell J.S. Emerging Roles for von Willebrand Factor in Cancer Cell Biology. Semin. Thromb. Hemost. 44(2):159-166. 2018.

Kopp H.G., Placke T., Salih H.R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 69(19):7775-7783. 2009.

Placke T., Orgel M., Schaller M., Jung G., Rammensee H.G., Kopp H.G., Salih H.R. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 72(2):440-448. 2012.

Haemmerle M., Taylor M.L., Gutschner T., Pradeep S., Cho M.S., Sheng J., Lyons Y.M., Nagaraja A.S., Dood R.L., Wen Y., Mangala L.S., Hansen J.M., Rupaimoole R., Gharpure K.M., Rodriguez-Aguayo C., Yim S.Y., Lee J.S., Ivan C., Hu W., Lopez-Berestein G., Wong S.T., Karlan B.Y., Levine D.A., Liu J., Afshar-Kharghan V., Sood A.K. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 8(1):310. 2017.

Foss A., Munoz-Sagredo L., Sleeman J., Thiele W. The contribution of platelets to intravascular arrest, extravasation, and outgrowth of disseminated tumor cells. Clin. Exp. Metastasis. 37(1):47-67. 2020.

Reymond N., d'Agua B.B., Ridley A.J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer. 13(12):858-870. 2013.

Chambers A.F., MacDonald I.C., Schmidt E.E., Koop S., Morris V.L., Khokha R., Groom A.C. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 14(4):279-301. 1995.

Xu X.R., Carrim N., Neves M.A., McKeown T., Stratton T.W., Coelho R.M., Lei X., Chen P., Xu J., Dai X., Li B.X., Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J. 14. Suppl 1:29. 2016.

van der Meijden P.E.J., Heemskerk J.W.M. Platelet biology and functions: new concepts and clinical perspectives. Nat. Rev. Cardiol. 16(3):166-179. 2019.

McCarty O.J., Mousa S.A., Bray P.F., Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood. 96(5):1789-1797. 2000.

Chen M., Geng J.G. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch. Immunol. Ther. Exp. (Warsz). 54(2):75-84. 2006.

Qi C.L., Wei B., Ye J., Yang Y., Li B., Zhang Q.Q., Li J.C., He X.D., Lan T., Wang L.J. P-selectin-mediated platelet adhesion promotes the metastasis of murine melanoma cells. PLoS One. 9(3):e91320. 2014.

Stegner D., Dutting S., Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb. Res. 133 Suppl 2:S149-S157. 2014.

Sindelar W.F., Tralka T.S., Ketcham A.S. Electron microscopic observations on formation of pulmonary metastases. J. Surg. Res. 18(2):137-161. 1975.

Schumacher D., Strilic B., Sivaraj K.K., Wettschureck N., Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 24(1):130-137. 2013.

Harper M.T., Savage J.S., Poole A.W. Comment on "Platelet-derived nucleotides promote tumor cell transendothelial migration and metastasis via P2Y2 receptor" by Schumacher et al. Cancer Cell. 24(3):287. 2013.

Gresele P., Falcinelli E., Sebastiano M., Momi S. Matrix Metalloproteinases and Platelet Function. Prog. Mol. Biol. Transl .Sci. 147:133-165. 2017.

Albeiroti S., Ayasoufi K., Hill D.R., Shen B., de la Motte C.A. Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation. Blood. 125(9):1460-1469. 2015.

Cui H., Tan Y.X., Osterholm C., Zhang X., Hedin U., Vlodavsky I., Li J.P. Heparanase expression upregulates platelet adhesion activity and thrombogenicity. Oncotarget. 7(26):39486-39496. 2016.

Conlon G.A., Murray G.I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 247(5):629-640. 2019.

Weber M.R., Zuka M., Lorger M., Tschan M., Torbett B.E., Zijlstra A., Quigley J.P., Staflin K., Eliceiri B.P., Krueger J.S., Marchese P., Ruggeri Z.M., Felding B.H. Activated tumor cell integrin alphavbeta3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res. 140. Suppl 1:S27-S36. 2016.

Mammadova-Bach E., Gil-Pulido J., Sarukhanyan E., Burkard P., Shityakov S., Schonhart C., Stegner D., Remer K., Nurden P., Nurden A.T., Dandekar T., Nehez L., Dank M., Braun A., Mezzano D., Abrams S.I., Nieswandt B. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived Galectin-3. Blood. 2020.

Schleicher R.I., Reichenbach F., Kraft P., Kumar A., Lescan M., Todt F., Gobel K., Hilgendorf I., Geisler T., Bauer A., Olbrich M., Schaller M., Wesselborg S., O'Reilly L., Meuth S.G., Schulze-Osthoff K., Gawaz M., Li X., Kleinschnitz C., Edlich F., Langer H.F. Platelets induce apoptosis via membrane-bound FasL. Blood. 126(12):1483-1493. 2015.

Kuckleburg C.J., Tiwari R., Czuprynski C.J. Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species. Thromb. Haemost. 99(2):363-372. 2008.

Strilic B., Yang L., Albarran-Juarez J., Wachsmuth L., Han K., Muller U.C., Pasparakis M., Offermanns S. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 536(7615):215-218. 2016.

Shaughnessy S.G., Lafrenie R.M., Buchanan M.R., Podor T.J., Orr F.W. Endothelial cell damage by Walker carcinosarcoma cells is dependent on vitronectin receptor-mediated tumor cell adhesion. Am. J. Pathol. 138(6):1535-1543. 1991.

Labelle M., Begum S., Hynes R.O. Platelets guide the formation of early metastatic niches. Proc. Nat.l Acad. Sci. USA. 111(30):E3053-E3061. 2014.

Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R., Kaiser E.A., Snyder L.A., Pollard J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475(7355):222-225. 2011.

Chen Q., Zhang X.H., Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 20(4):538-549. 2011.

Lu X., Mu E., Wei Y., Riethdorf S., Yang Q., Yuan M., Yan J., Hua Y., Tiede B.J., Lu X., Haffty B.G., Pantel K., Massague J., Kang Y. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 20(6):701-714. 2011.

Risau W. Mechanisms of angiogenesis. Nature. 386(6626):671-674. 1997.

Risau W., Flamme I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73-91. 1995.

Ratajska A., Jankowska-Steifer E., Czarnowska E., Olkowski R., Gula G., Niderla-Bielinska J., Flaht-Zabost A., Jasinska A. Vasculogenesis and Its Cellular Therapeutic Applications. Cells Tissues Organs. 203(3):141-152. 2017.

Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 275(5302):964-967. 1997.

Bussolati B., Grange C., Camussi G. Tumor exploits alternative strategies to achieve vascularization. FASEB J. 25(9):2874-2882. 2011.

De Palma M., Biziato D., Petrova T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer. 17(8):457-474. 2017.

Potente M., Gerhardt H., Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 146(6):873-887. 2011.

Verheul H.M., Hoekman K., Lupu F., Broxterman H.J., van der Valk P., Kakkar A.K., Pinedo H.M. Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clin. Cancer Res. 6(1):166-171. 2000.

Sierko E., Wojtukiewicz M.Z. Platelets and angiogenesis in malignancy. Semin. Thromb. Hemost. 30(1):95-108. 2004.

Peterson J.E., Zurakowski D., Italiano J.E., Jr., Michel L.V., Fox L., Klement G.L., Folkman J. Normal ranges of angiogenesis regulatory proteins in human platelets. Am. J. Hematol. 85(7):487-493. 2010.

Marech I., Leporini C., Ammendola M., Porcelli M., Gadaleta C.D., Russo E., De Sarro G., Ranieri G. Classical and non-classical proangiogenic factors as a target of antiangiogenic therapy in tumor microenvironment. Cancer Lett. 380(1):216-226. 2016.

Battinelli E.M., Markens B.A., Kulenthirarajan R.A., Machlus K.R., Flaumenhaft R., Italiano J.E. Jr. Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response. Blood. 123(1):101-112. 2014.

Italiano J.E. Jr., Richardson J.L., Patel-Hett S., Battinelli E., Zaslavsky A., Short S., Ryeom S., Folkman J., Klement G.L. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 111(3):1227-1233. 2008.

Huang Z., Miao X., Luan Y., Zhu L., Kong F., Lu Q., Pernow J., Nilsson G., Li N. PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. J. Thromb. Haemost. 13(3):465-476. 2015.

Battinelli E.M., Markens B.A., Italiano J.E., Jr. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood. 118(5):1359-1369. 2011.

Campanella R., Guarnaccia L., Cordiglieri C., Trombetta E., Caroli M., Carrabba G., La Verde N., Rampini P., Gaudino C., Costa A., Luzzi S., Mantovani G., Locatelli M., Riboni L., Navone S.E., Marfia G. Tumor-Educated Platelets and Angiogenesis in Glioblastoma: Another Brick in the Wall for Novel Prognostic and Targetable Biomarkers, Changing the Vision from a Localized Tumor to a Systemic Pathology. Cells. 9(2):1-15. 2020.

Peterson J.E., Zurakowski D., Italiano J.E., Jr., Michel L.V., Connors S., Oenick M., D'Amato R.J., Klement G.L., Folkman J. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 15(2):265-273. 2012.

Feng W., Madajka M., Kerr B.A., Mahabeleshwar G.H., Whiteheart S.W., Byzova T.V. A novel role for platelet secretion in angiogenesis: mediating bone marrow-derived cell mobilization and homing. Blood. 117(14):3893-3902. 2011.

Chiodoni C., Iezzi M., Guiducci C., Sangaletti S., Alessandrini I., Ratti C., Tiboni F., Musiani P., Granger D.N., Colombo M.P. Triggering CD40 on endothelial cells contributes to tumor growth. J. Exp. Med. 203(11):2441-2450. 2006.

Kuznetsov H.S., Marsh T., Markens B.A., Castano Z., Greene-Colozzi A., Hay S.A., Brown V.E., Richardson A.L., Signoretti S., Battinelli E.M., McAllister S.S. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov. 2(12):1150-1165. 2012.

Verheul H.M., Jorna A.S., Hoekman K., Broxterman H.J., Gebbink M.F., Pinedo H.M. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 96(13):4216-4221. 2000.

Sabrkhany S., Griffioen A.W., Oude Egbrink M.G. The role of blood platelets in tumor angiogenesis. Biochim. Biophys. Acta. 1815(2):189-196. 2011.

Ho-Tin-Noe B., Goerge T., Cifuni S.M., Duerschmied D., Wagner D.D. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 68(16):6851-6858. 2008.

Li R., Ren M., Chen N., Luo M., Deng X., Xia J., Yu G., Liu J., He B., Zhang X., Zhang Z., Zhang X., Ran B., Wu J. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer. 14:167. 2014.

Gremmel T., Frelinger A.L., 3rd, Michelson A.D. Platelet Physiology. Semin. Thromb. Hemost. 42(3):191-204. 2016.

Metelli A., Salem M., Wallace C.H., Wu B.X., Li A., Li X., Li Z. Immunoregulatory functions and the therapeutic implications of GARP-TGF-beta in inflammation and cancer. J. Hematol. Oncol. 11(1):24. 2018.

Cho M.S., Bottsford-Miller J., Vasquez H.G., Stone R., Zand B., Kroll M.H., Sood A.K., Afshar-Kharghan V. Platelets increase the proliferation of ovarian cancer cells. Blood. 120(24):4869-4872. 2012.

Yuan L., Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol. Med. Rep. 11(4):2449-2458. 2015.

Boucharaba A., Serre C.M., Gres S., Saulnier-Blache J.S., Bordet J.C., Guglielmi J., Clezardin P., Peyruchaud O. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest. 114(12):1714-1725. 2004.

Thiele W., Rothley M., Dimmler A., Bugert P., Salomo Coll C., Sleeman J.P. Platelet deficiency in Tpo(-/-) mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner. Clin. Exp. Metastasis. 35(7):679-689. 2018.

Kailashiya J. Platelet-derived microparticles analysis: Techniques, challenges and recommendations. Anal. Biochem. 546:78-85. 2018.

Randriamboavonjy V., Fleming I. Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin. Sci. (Lond). 132(17):1875-1888. 2018.

Freyssinet J.M., Toti F. Formation of procoagulant microparticles and properties. Thromb. Res. 125. Suppl 1:S46-S48. 2010.

Plantureux L., Crescence L., Dignat-George F., Panicot-Dubois L., Dubois C. Effects of platelets on cancer progression. Thromb. Res. 164. Suppl 1:S40-S47. 2018.

Tesselaar M.E., Romijn F.P., van der Linden I.K., Bertina R.M., Osanto S. Microparticle-associated tissue factor activity in cancer patients with and without thrombosis. J. Thromb. Haemost. 7(8):1421-1423. 2009.

Zara M., Guidetti G.F., Boselli D., Villa C., Canobbio I., Seppi C., Visconte C., Canino J., Torti M. Release of Prometastatic Platelet-Derived Microparticles Induced by Breast Cancer Cells: A Novel Positive Feedback Mechanism for Metastasis. TH Open. 1(2):e155-e163. 2017.

Baj-Krzyworzeka M., Majka M., Pratico D., Ratajczak J., Vilaire G., Kijowski J., Reca R., Janowska-Wieczorek A., Ratajczak M.Z. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp. Hematol. 30(5):450-459. 2002.

Janowska-Wieczorek A., Marquez-Curtis L.A., Wysoczynski M., Ratajczak M.Z. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion. 46(7):1199-1209. 2006.

Dashevsky O., Varon D., Brill A. Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int. J. Cancer. 124(8):1773-1777. 2009.

Gasperi V., Vangapandu C., Savini I., Ventimiglia G., Adorno G., Catani M.V. Polyunsaturated fatty acids modulate the delivery of platelet microvesicle-derived microRNAs into human breast cancer cell lines. J. Nutr. Biochem. 74:108242. 2019.

Lee Y., El Andaloussi S., Wood M.J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 21(R1):R125-134. 2012.

Wong L.L., Wang J., Liew O.W., Richards A.M., Chen Y.T. MicroRNA and Heart Failure. Int. J. Mol. Sci. 17(4):502. 2016.

Bohnsack M.T., Czaplinski K., Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 10(2):185-191. 2004.

Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11(9):597-610. 2010.

Turchinovich A., Tonevitsky A.G., Burwinkel B. Extracellular miRNA: A Collision of Two Paradigms. Trends Biochem. Sci. 41(10):883-892. 2016.

Landry P., Plante I., Ouellet D.L., Perron M.P., Rousseau G., Provost P. Existence of a microRNA pathway in anucleate platelets. Nat. Struct. Mol. Biol. 16(9):961-966. 2009.

Tang M., Jiang L., Lin Y., Wu X., Wang K., He Q., Wang X., Li W. Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition. Oncotarget. 8(57):97464-97475. 2017.

Liang H., Yan X., Pan Y., Wang Y., Wang N., Li L., Liu Y., Chen X., Zhang C.Y., Gu H., Zen K. MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol. Cancer. 14:58. 2015.

Pan B., Chen Y., Song H., Xu Y., Wang R., Chen L. Mir-24-3p downregulation contributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A. Oncotarget. 6(1):317-331. 2015.

Zhu H., Wu H., Liu X., Evans B.R., Medina D.J., Liu C.G., Yang J.M. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem. Pharmacol. 76(5):582-588. 2008.

Miao X., Rahman M.F., Jiang L., Min Y., Tan S., Xie H., Lee L., Wang M., Malmstrom R.E., Lui W.O., Li N. Thrombin-reduced miR-27b attenuates platelet angiogenic activities in vitro via enhancing platelet synthesis of anti-angiogenic thrombospondin-1. J. Thromb. Haemost. 16(4):791-801. 2018.

Anene C., Graham A.M., Boyne J., Roberts W. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochim. Biophys. Acta Mol Basis Dis. 1864(8):2633-2643. 2018.

Coupland L.A., Chong B.H., Parish C.R. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 72(18):4662-4671. 2012.

Jackson W., 3rd, Sosnoski D.M., Ohanessian S.E., Chandler P., Mobley A., Meisel K.D., Mastro A.M. Role of Megakaryocytes in Breast Cancer Metastasis to Bone. Cancer Res. 77(8):1942-1954. 2017.

Wang Z., Huang H. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy. Cancer Lett. 331(2):147-153. 2013.

Michael J.V., Wurtzel J.G.T., Mao G.F., Rao A.K., Kolpakov M.A., Sabri A., Hoffman N.E., Rajan S., Tomar D., Madesh M., Nieman M.T., Yu J., Edelstein L.C., Rowley J.W., Weyrich A.S., Goldfinger L.E. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood. 130(5):567-580. 2017.

Cao L., Zhang X., Cao F., Wang Y., Shen Y., Yang C., Uzan G., Peng B., Zhang D. Inhibiting inducible miR-223 further reduces viable cells in human cancer cell lines MCF-7 and PC3 treated by celastrol. BMC Cancer. 15:873. 2015.

Pinatel E.M., Orso F., Penna E., Cimino D., Elia A.R., Circosta P., Dentelli P., Brizzi M.F., Provero P., Taverna D. miR-223 is a coordinator of breast cancer progression as revealed by bioinformatics predictions. PLoS One. 9(1):e84859. 2014.

Sun X., Li Y., Zheng M., Zuo W., Zheng W. MicroRNA-223 Increases the Sensitivity of Triple-Negative Breast Cancer Stem Cells to TRAIL-Induced Apoptosis by Targeting HAX-1. PLoS One. 11(9):e0162754. 2016.

Liu B., Peng X.C., Zheng X.L., Wang J., Qin Y.W. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 66(2):169-175. 2009.

Shi L., Fisslthaler B., Zippel N., Fromel T., Hu J., Elgheznawy A., Heide H., Popp R., Fleming I. MicroRNA-223 antagonizes angiogenesis by targeting beta1 integrin and preventing growth factor signaling in endothelial cells. Circ Res. 113(12):1320-1330. 2013.

Li N. Platelets in cancer metastasis: To help the "villain" to do evil. Int. J. Cancer. 138(9):2078-2087. 2016.

Patrignani P., Patrono C. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim. Biophys. Acta. 1851(4):422-432. 2015.

Patrignani P., Patrono C. Aspirin, platelet inhibition and cancer prevention. Platelets. 29(8):779-785. 2018.

Xu X.R., Yousef G.M., Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood. 131(16):1777-1789. 2018.

Patrignani P., Tacconelli S., Piazuelo E., Di Francesco L., Dovizio M., Sostres C., Marcantoni E., Guillem-Llobat P., Del Boccio P., Zucchelli M., Patrono C., Lanas A. Reappraisal of the clinical pharmacology of low-dose aspirin by comparing novel direct and traditional indirect biomarkers of drug action. J. Thromb. Haemost. 12(8):1320-1330. 2014.

Sostres C., Gargallo C.J., Lanas A. Aspirin, cyclooxygenase inhibition and colorectal cancer. World J. Gastrointest.. Pharmacol Ther. 5(1):40-49. 2014.

Thun M.J., Jacobs E.J., Patrono C. The role of aspirin in cancer prevention. Nat. Rev Clin. Oncol. 9(5):259-267. 2012.

Algra A.M., Rothwell P.M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 13(5):518-527. 2012.

Rothwell P.M., Fowkes F.G., Belch J.F., Ogawa H., Warlow C.P., Meade T.W. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 377(9759):31-41. 2011.

Sandler R.S., Halabi S., Baron J.A., Budinger S., Paskett E., Keresztes R., Petrelli N., Pipas J.M., Karp D.D., Loprinzi C.L., Steinbach G., Schilsky R. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 348(10):883-890. 2003.

Baron J.A., Cole B.F., Sandler R.S., Haile R.W., Ahnen D., Bresalier R., McKeown-Eyssen G., Summers R.W., Rothstein R., Burke C.A., Snover D.C., Church T.R., Allen J.I., Beach M., Beck G.J., Bond J.H., Byers T., Greenberg E.R., Mandel J.S., Marcon N., Mott L.A., Pearson L., Saibil F., van Stolk R.U. A randomized trial of aspirin to prevent colorectal adenomas. N. Engl. J. Med. 348(10):891-899. 2003.

Hull M.A., Sprange K., Hepburn T., Tan W., Shafayat A., Rees C.J., Clifford G., Logan R.F., Loadman P.M., Williams E.A., Whitham D., Montgomery A.A., se A.C.G. Eicosapentaenoic acid and aspirin, alone and in combination, for the prevention of colorectal adenomas (seAFOod Polyp Prevention trial): a multicentre, randomised, double-blind, placebo-controlled, 2 x 2 factorial trial. Lancet. 392(10164):2583-2594. 2018.

Chan A.T., Ogino S., Fuchs C.S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356(21):2131-2142. 2007.

Jiang M.J., Dai J.J., Gu D.N., Huang Q., Tian L. Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials. Biochim. Biophys. Acta. 1866(2):163-176. 2016.

Ye X., Fu J., Yang Y., Gao Y., Liu L., Chen S. Frequency-risk and duration-risk relationships between aspirin use and gastric cancer: a systematic review and meta-analysis. PLoS One. 8(7):e71522. 2013.

Vidal A.C., Howard L.E., Moreira D.M., Castro-Santamaria R., Andriole G.L., Freedland S.J. Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clin. Cancer Res. 21(4):756-762. 2015.

Lucotti S., Cerutti C., Soyer M., Gil-Bernabe A.M., Gomes A.L., Allen P.D., Smart S., Markelc B., Watson K., Armstrong P.C., Mitchell J.A., Warner T.D., Ridley A.J., Muschel R.J. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J. Clin. Invest. 129(5):1845-1862. 2019.

Nguyen T.A., Diodati J.G., Pharand C. Resistance to clopidogrel: a review of the evidence. J. Am. Coll. Cardiol. 45(8):1157-1164. 2005.

Bambace N.M., Levis J.E., Holmes C.E. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets. 21(2):85-93. 2010.

Rodriguez-Miguel A., Garcia-Rodriguez L.A., Gil M., Montoya H., Rodriguez-Martin S., de Abajo F.J. Clopidogrel and Low-Dose Aspirin, Alone or Together, Reduce Risk of Colorectal Cancer. Clin. Gastroenterol. Hepatol. 17(10):2024-2033 e2. 2019.

Hicks B.M., Murray L.J., Hughes C., Cardwell C.R. Clopidogrel use and cancer-specific mortality: a population-based cohort study of colorectal, breast and prostate cancer patients. Pharmacoepidemiol. Drug Saf. 24(8):830-840. 2015.

Elmariah S., Doros G., Benavente O.R., Bhatt D.L., Connolly S.J., Yusuf S., Steinhubl S.R., Liu Y., Hsieh W.H., Yeh R.W., Mauri L. Impact of Clopidogrel Therapy on Mortality and Cancer in Patients With Cardiovascular and Cerebrovascular Disease: A Patient-Level Meta-Analysis. Circ. Cardiovasc. Interv. 11(1):e005795. 2018.

Serebruany V.L., Dinicolantonio J.J., Can M.M., Pershukov I.V., Kuliczkowski W. Gastrointestinal adverse events after dual antiplatelet therapy: clopidogrel is safer than ticagrelor, but prasugrel data are lacking or inconclusive. Cardiology. 126(1):35-40. 2013.

Gresele P., Momi S., Malvestiti M., Sebastiano M. Platelet-targeted pharmacologic treatments as anti-cancer therapy. Cancer Metastasis Rev. 36(2):331-355. 2017.

Kotronias R.A., Kwok C.S., Wong C.W., Kinnaird T., Zaman A., Mamas M.A. Cancer Event Rate and Mortality with Thienopyridines: A Systematic Review and Meta-Analysis. Drug Saf. 40(3):229-240. 2017.

Leader A., Zelikson-Saporta R., Pereg D., Spectre G., Rozovski U., Raanani P., Hermoni D., Lishner M. The Effect of Combined Aspirin and Clopidogrel Treatment on Cancer Incidence. Am. J. Med. 130(7):826-832. 2017.

Durrant T.N., van den Bosch M.T., Hers I. Integrin alphaIIbbeta3 outside-in signaling. Blood. 130(14):1607-1619. 2017.

Lavergne M., Janus-Bell E., Schaff M., Gachet C., Mangin P.H. Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers (Basel). 9(10):1-17. 2017.

Amirkhosravi A., Mousa S.A., Amaya M., Blaydes S., Desai H., Meyer T., Francis J.L. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb. Haemost. 90(3):549-554. 2003.

Zhang W., Dang S., Hong T., Tang J., Fan J., Bu D., Sun Y., Wang Z., Wisniewski T. A humanized single-chain antibody against beta 3 integrin inhibits pulmonary metastasis by preferentially fragmenting activated platelets in the tumor microenvironment. Blood. 120(14):2889-2898. 2012.

Chew D.P., Bhatt D.L., Sapp S., Topol E.J. Increased mortality with oral platelet glycoprotein IIb/IIIa antagonists: a meta-analysis of phase III multicenter randomized trials. Circulation. 103(2):201-206. 2001.

Schwarz M., Meade G., Stoll P., Ylanne J., Bassler N., Chen Y.C., Hagemeyer C.E., Ahrens I., Moran N., Kenny D., Fitzgerald D., Bode C., Peter K. Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ. Res. 99(1):25-33. 2006.

Li J., Vootukuri S., Shang Y., Negri A., Jiang J.K., Nedelman M., Diacovo T.G., Filizola M., Thomas C.J., Coller B.S. RUC-4: a novel alphaIIbbeta3 antagonist for prehospital therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 34(10):2321-2329. 2014.

Gieseler F., Ungefroren H., Settmacher U., Hollenberg M.D., Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun. Signal. 11:86. 2013.

Wojtukiewicz M.Z., Hempel D., Sierko E., Tucker S.C., Honn K.V. Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis. Cancer Metastasis Rev. 34(4):775-796. 2015.

Posma J.J., Posthuma J.J., Spronk H.M. Coagulation and non-coagulation effects of thrombin. J. Thromb. Haemost. 14(10):1908-1916. 2016.

Liu X., Yu J., Song S., Yue X., Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget. 8(63):107334-107345. 2017.

Wojtukiewicz M.Z., Hempel D., Sierko E., Tucker S.C., Honn K.V. Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination. Cancers (Basel). 11(1):1-18. 2019.

Chanakira A., Westmark P.R., Ong I.M., Sheehan J.P. Tissue factor-factor VIIa complex triggers protease activated receptor 2-dependent growth factor release and migration in ovarian cancer. Gynecol. Oncol. 145(1):167-175. 2017.

Covic L., Kuliopulos A. Protease-Activated Receptor 1 as Therapeutic Target in Breast, Lung, and Ovarian Cancer: Pepducin Approach. Int. J. Mol .Sci. 19(8):1-16. 2018.

Goto S., Ogawa H., Takeuchi M., Flather M.D., Bhatt D.L., Investigators J.L. Double-blind, placebo-controlled Phase II studies of the protease-activated receptor 1 antagonist E5555 (atopaxar) in Japanese patients with acute coronary syndrome or high-risk coronary artery disease. Eur. Heart J. 31(21):2601-2613. 2010.

Sun J., Du Y., Zhang X., Wang Z., Lin Y., Song Q., Wang X., Guo J., Li S., Nan J., Yang J. Discovery and evaluation of Atopaxar hydrobromide, a novel JAK1 and JAK2 inhibitor, selectively induces apoptosis of cancer cells with constitutively activated STAT3. Invest. New Drugs.38(4):1003-1011. 2019.

Gresele P., Momi S., Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br. J. Clin. Pharmacol. 72(4):634-646. 2011.

Rhodes E.L., Misch K.J., Edwards J.M., Jarrett P.E. Dipyridamole for treatment of melanoma. Lancet. 1(8430):655-712. 1985.

Todd K.E., Gloor B., Lane J.S., Isacoff W.H., Reber H.A. Resection of locally advanced pancreatic cancer after downstaging with continuous-infusion 5-fluorouracil, mitomycin-C, leucovorin, and dipyridamole. J. Gastrointest. Surg. 2(2):159-166. 1998.

New M.L., White C.M., McGonigle P., McArthur D.G., Dwyer-Nield L.D., Merrick D.T., Keith R.L., Tennis M.A. Prostacyclin and EMT Pathway Markers for Monitoring Response to Lung Cancer Chemoprevention. Cancer Prev. Res. (Phila). 11(10):643-654. 2018.

Keith R.L., Blatchford P.J., Kittelson J., Minna J.D., Kelly K., Massion P.P., Franklin W.A., Mao J., Wilson D.O., Merrick D.T., Hirsch F.R., Kennedy T.C., Bunn P.A., Jr., Geraci M.W., Miller Y.E. Oral iloprost improves endobronchial dysplasia in former smokers. Cancer Prev. Res. (Phila). 4(6):793-802. 2011.

Dwyer-Nield L., Hickey G.A., Friedman M., Choo K., McArthur D.G., Tennis M.A., New M.L., Geraci M., Keith R.L. The Second-Generation PGI2 Analogue Treprostinil Fails to Chemoprevent Tumors in a Murine Lung Adenocarcinoma Model. Cancer Prev. Res. (Phila). 10(11):671-679. 2017.

Sarkar S., Alam M.A., Shaw J., Dasgupta A.K. Drug delivery using platelet cancer cell interaction. Pharm. Res. 30(11):2785-2794. 2013.

Cagel M., Grotz E., Bernabeu E., Moretton M.A., Chiappetta D.A. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov. Today. 22(2):270-281. 2017.

Xu P., Zuo H., Zhou R., Wang F., Liu X., Ouyang J., Chen B. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Oncotarget. 8(35):58322-58337. 2017.

Li J., Sharkey C.C., Wun B., Liesveld J.L., King M.R. Genetic engineering of platelets to neutralize circulating tumor cells. J. Control. Release. 228:38-47. 2016.

Du Y., Chen B. Combination of drugs and carriers in drug delivery technology and its development. Drug. Des Devel. Ther. 13:1401-1408. 2019.

Hu Q., Sun W., Qian C., Wang C., Bomba H.N., Gu Z. Anticancer Platelet-Mimicking Nanovehicles. Adv. Mater. 27(44):7043-7050. 2015.

Shang Y., Wang Q., Wu B., Zhao Q., Li J., Huang X., Chen W., Gui R. Platelet-Membrane-Camouflaged Black Phosphorus Quantum Dots Enhance Anticancer Effect Mediated by Apoptosis and Autophagy. ACS Appl. Mate.r Interfaces. 11(31):28254-28266. 2019.

Kim M.W., Lee G., Niidome T., Komohara Y., Lee R., Park Y.I. Platelet-Like Gold Nanostars for Cancer Therapy: The Ability to Treat Cancer and Evade Immune Reactions. Front Bioeng. Biotechnol. 8(133):1-11. 2020.

Kailashiya J., Gupta V., Dash D. Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget. 10(56):5835-5846. 2019.

Wu M., Le W., Mei T., Wang Y., Chen B., Liu Z., Xue C. Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. Int. J. Nanomed. 14:4431-4448. 2019.

Klement G.L., Yip T.T., Cassiola F., Kikuchi L., Cervi D., Podust V., Italiano J.E., Wheatley E., Abou-Slaybi A., Bender E., Almog N., Kieran M.W., Folkman J. Platelets actively sequester angiogenesis regulators. Blood. 113(12):2835-2842. 2009.

Nilsson R.J., Balaj L., Hulleman E., van Rijn S., Pegtel D.M., Walraven M., Widmark A., Gerritsen W.R., Verheul H.M., Vandertop W.P., Noske D.P., Skog J., Wurdinger T. Blood platelets contain tumor-derived RNA biomarkers. Blood. 118(13):3680-3683. 2011.

Calverley D.C., Phang T.L., Choudhury Q.G., Gao B., Oton A.B., Weyant M.J., Geraci M.W. Significant downregulation of platelet gene expression in metastatic lung cancer. Clin. Transl. Sci. 3(5):227-232. 2010.

Dovizio M., Bruno A., Contursi A., Grande R., Patrignani P. Platelets and extracellular vesicles in cancer: diagnostic and therapeutic implications. Cancer Metastasis Rev. 37(2-3):455-467. 2018.

Best M.G., Sol N., Kooi I., Tannous J., Westerman B.A., Rustenburg F., Schellen P., Verschueren H., Post E., Koster J., Ylstra B., Ameziane N., Dorsman J., Smit E.F., Verheul H.M., Noske D.P., Reijneveld J.C., Nilsson R.J.A., Tannous B.A., Wesseling P., Wurdinger T. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell. 28(5):666-676. 2015.

Mege D., Panicot-Dubois L., Ouaissi M., Robert S., Sielezneff I., Sastre B., Dignat-George F., Dubois C. The origin and concentration of circulating microparticles differ according to cancer type and evolution: A prospective single-center study. Int. J. Cancer. 138(4):939-948. 2016.

Wang C.C., Tseng C.C., Chang H.C., Huang K.T., Fang W.F., Chen Y.M., Yang C.T., Hsiao C.C., Lin M.C., Ho C.K., Yip H.K. Circulating microparticles are prognostic biomarkers in advanced non-small cell lung cancer patients. Oncotarget. 8(44):75952-75967. 2017.

Sudhakar A. History of Cancer, Ancient and Modern Treatment Methods. J. Cancer Sci. Ther. 1(2):1-4. 2009.

Wu T., Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 387:61-68. 2017.