Biophotons and Visual Phenomena
PDF (English)

Как цитировать

Говардовский, В. И. (2020). Biophotons and Visual Phenomena. Российский физиологический журнал им. И. М. Сеченова, 106(8), 927–951. извлечено от https://rusjphysiol.org/index.php/rusjphysiol/article/view/944

Аннотация

The review considers modern un-orthodox ideas on the origin of visual phenomena of apparently various nature (photoreceptors’ dark light, negative afterimages, and various sorts of phosphenes such as electrophosphenes, magnetophosphenes, radiation phosphenes, and mechanophosphenes). The new framework provides a unifying explanation for all the phenomena that are suggested to be a perception of biophotons (ultra-weak photon emission, UPE) that are generated mostly by lipid peroxidation (LPO) during routine cellular metabolism. In the paper, the biochemical mechanism of biophotons’ generation is briefly explained. It is concluded that the outer segments of retinal photoreceptors provide an excellent substrate for LPO thus being a good candidate for UPE production. Experiments show that the retina in complete darkness indeed emits an extremely low level of bioluminescence. Yet its intensity is two orders of magnitude below the dark-adapted visual threshold, and over 100 times smaller than necessary to generate the photoreceptors’ dark noise. UPE also cannot be a source of afterimages because its intensity is far too low. Besides, the background light necessary to produce a negative afterimage is actually supplied by the ambient light that passes into the eye through closed lids. All other sorts of phosphenes attributed to UPE cannot be produced by biophotons since it is known for at least 200 years that the phosphenes are seen in daylight, that is, at the intensities billions of times brighter than the intensity of UPE. Thus, the new explanatory framework for all visual phenomena based on UPE should be discarded in its entirety.

PDF (English)

Литература

Gurwitsch A. G. Die Natur des spezifischen Erregers der Zellteilung. Arch. Mikrosk. Anat. und Entw. Mech. 100: 11–40. 1923.

Gurwitsch A. G. Physicalisches über mitogenetische Strahlen. Arch. Mikrosk. Anat. und Entw. Mech. 103: 490–498. 1924.

Gurwitsch L., Anikin A. Das Cornealepithel as Detector and Sender mitogenetischer Strahlung. Wilhelm Roux Arch. Entwichl. Mech. Org. 113: 731-739. 1928.

Volodyaev I., Beloussov LV. Revisiting the mitogenetic effect of ultra-weak photon emission. Front. Physiol. 6: 241. 2015.

Langmuir I. On pathological science. Lecture of 1953 transcribed by R.N.Hall and published in Physics Today. 42: 36-48. 1989.

Sun Y., Wang Ch., Dai J. Biophotons as neural communication signals demonstrated by in situ biophoton autography. Photochem. Photobiol. Sci. 9: 315–322. 2010.

Prasad A., Pospìšil P. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J. Biomed. Optics.17: 085004. 2012.

Cifra M., Pospìšil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B: Biology. 139: 2–10. 2014.

Ortega-Ojeda F., Calcerrada M., Ferrero A., Campos J., Garcia-Ruiz C. Measuring the human ultra-weak photon emission distribution using an election-multiplying, charge-coupled device as a sensor. Sensors. 18: 1152. 2018.

Novo E., Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis & Tissue Repair. 1: 5. 2008.

Murphy M.E., Sies H. Visible-range low-level chemiluminescence in biological systems. Methods in Enzymology. 186: 595-610. 1990.

Albertin R., Abuja P.M. Monitoring low-density lipoprotein oxidation by low-level chemiluminescence. Free Rad. Res. 29: 75 – 83. 1998.

Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (Pt 2): 335–344. 2003.

Dickinson B.C, Chang C.J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chem. Biol. 7: 504–511. 2011.

Fedorova G.F., Trofimov A.V., Vasiil’ev R.F., Veprintsev T.L. Peroxy-radical mediated chemiluminescence: mechanistic diversity and fundamentals for antioxidant assay. ARCIVOC. VIII. 163 – 215. 2007.

Catala´ A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Rev. Internat. J. Biochem. & Cell Biol. 38: 1482–1495. 2006.

Fliesler S. J., Anderson, R. E. Chemistry and metabolism of lipids in the vertebrate retina. Progress in Lipid Res. 22: 79–131. 1983.

Daemen F. J. M. Vertebrate rod outer segment membranes. Biochim. Biophys. Acta. 300: 255–288. 1973.

Bokkon I., Vimal R.L.P. Retinal phosphenes and discrete dark noises in rods:

a new biophysical framework. J. Photochem. Photobiol. B: Biol. 96: 255 - 259. 2009.

Salari V., Scholkmann F., Bokkon I., Shahbazi F., Tuszynski J. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission? PLoS ONE. 11 (3): e0148336. 2016.

Salari V., Scholkmann F., Vimal R.L.P., Csaszar N., Mehdi Aslani M., Bokkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Progr. Retinal and Eye Res. 60:101e1. 2017.

Burgos R.C.R., Schoeman J.C.,Winden L.J.V., Červinková K., Ramautar R., Van Wijk E.P.A., Cifra M.,Berger R., Hankemeier T., Greef J.V. Ultra-weak photon emission as

a dynamic tool for monitoring oxidative stress metabolism. Scient. Rep.| 7: 1229. 2017.

Gurwitsch A. G., Gurwitsch L. D. Mitogenetic Radiation. Moscow. Medgiz. 1945. (In Russ).

Ives J.A., van Wijk E.P.A., Bat N., Crawford C., Jonas W.A., Jonas W.B., van Wijk R., van der Greef J. Ultraweak Photon Emission as a Non-Invasive Health Assessment: A Systematic Review. PLOS ONE 9(2): e87401. 2014.

Murugana N.J., Rouleaub N., Karbowskic L.M., Persinger M.A. Biophotonic markers of malignancy: Discriminating cancers using wavelength-specific biophotons. Biochem. Biophys. Rep. 13: 7–11. 2018.

Calcerrada M., Garcia-Ruiz C. Human Ultraweak Photon Emission: Key Analytical Aspects, Results and Future Trends - A Review. Crit. Rev. Anal. Chem. 49:368‐381. 2019.

Tessaro L. W. E., Dotta B. T., Persinger M. A. Bacterial biophotons as non‐local information carriers: Species‐specific spectral characteristics of a stress response. Microbiol. Open. 8(6): e00761. 2018.

Mothersill C., Smith R., Wang J., Rusin A., Fernandez-Palomo C., Fazzari J., Seymour C. Biological Entanglement–Like Effect After Communication of Fish Prior to X-Ray Exposure. Dose-Response. Internat. J. Jan. March: 1 – 17 .2018.

Rahnama M., Tuszynski J.A., Bokkon I., Cifra M., Sardar P., Salari V. Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J. Integrat. Neurosci. 10: 65-88. 2011.

Koumar S., Boone K., Tuszynski J.A., Barclay P., Simon K. Possible existence of optical communication channels in the brain. Scient. Rep. | 6:36508.| 2016.

Tang R., Dai J. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits. PloS One 9: e85643. 2014.

Bókkon I., Salari V., Tuszynski J.A., Antal I. Estimation of the number of biophotons involved in the visual perception of a single-object image: biophoton intensity can be considerably higher inside cells than outside. J. Photochem. Photobiol. B.100:160-166. 2010.

Bókkon I. Visual perception and imagery: a new molecular hypothesis. Biosystems. 96:178-184. 2009.

Cacha L.A., Poznanski R.R. Genomic instantiation of consciousness in neurons through a biophoton field theory. J. Integr. Neurosci. 132:253-292. 2014.

Wang Z., Wang N., Lib Z., Xiao F., Dai J. Human high intelligence is involved in spectral redshift of biophotonic activities in the brain. PNAS. 113:| 8753–8758. 2016.

Helmholtz H. Treatise on physiological optics. Vol. II, English translation. Dover Publications. N.Y. 1962. (Handbuch der physiologischen Optik. 3 Ausgabe. 1909).

Barlow H.B. Retinal noise and absolute threshold. J. Opt. Soc. Am. 46: 634-639. 1956.

de Vries H. Comment to Dr. Wald’s lecture. Documenta Ophthalmol. 3:137. 1949.

Barlow H.B. Purkinje shift and retinal noise. Nature. 179:255–256. 1957.

Baylor D.A., Lamb T.D., Yau K.-W. The membrane current of single rod outer segments. J. Physiol. 288:589–611. 1979.

Baylor D.A., Matthews G., Yau K.-W. Two components of electrical dark noise in toad retinal rod outer segments. J. Physiol. 309: 591–621.1980.

Rieke F., Baylor D.A. Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J. 71: 2553-2572. 1996.

Astakhova L.A., Nikolaeva D.A., Fedotkina T.V., Govardovskii V.I.,.Firsov M.L. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors. J. Gen. Physiol. 149:689–701. 2017.

Lamb T.D., Heck M., Kraft T.W. Implications of dimeric activation of PDE6 for rod phototransduction. Open Biol. 8: 180076. 2018.

Baylor D.A., Lamb T.D., Yau K-W. Responses of retinal rods to single photons. J. Physiol. 288. 613 -634. 1979.

Lamb T.D., Pugh E.N. Jr. Phototransdution, dark adaptation, and rhodopsin regeneration. The Proctor lecture. Investigat. Ophthalmol. Visual Sci. 47: 5138-5152. 2006.

Arshavsky V.Y., Burns M.E. Photoreceptor signaling: supporting

vision across a wide range of light intensities. J. Biol. Chem. 287: 1620–1626. 2012.

Arshavsky V.Y., Burns M.E. Current understanding of signal amplification in phototransduction. Cell. Logistics. 4: e29390. 2014.

Lamb T.D., Hunt D.M. Evolution of the vertebrate phototransduction cascade activation steps. Dev. Biol. 431: 77–92. 2017.

Lamb T.D., Patel H.R., Chuah A., Hunt D.M. Evolution of the shut-off steps of vertebrate phototransduction. Open Biol. 8:170232. 2018.

Donner K. Spectral and Thermal Properties of Rhodopsins: Closely Related but not Tightly Coupled. Russ. J. Physiol. 106(4): 421–435. 2020.

DOI: 10.31857/S086981392004001

Firsov M. L., Govardovskii V.I. Dark noise of visual pigments with different absorption maxima. Sensornye Sistemy. 4: 25–34. 1990. (In Russ).

Donner K., Firsov M.L., Govardovskii V.I. The frequency of isomerization-like”dark” events in rhodopsin and porphyropsin rods of the bull-frog retina. J. Physiol. 428:673–692. 1990.

Firsov M. L., Donner K., Govardovskii V.I. pH and rate of ‘‘dark’’ events in toad retinal rods: test of a hypothesis on the molecular origin of photoreceptor noise. J. Physiol. 539 (3): 837-846. 2002.

Luk H.L., Bhattacharyya N., Montisci F., Morrow J.M., Melaccio F., Wada A., Sheves M., Fanelli F., Chang B.S.W., Olivucci M. Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins. Scient. Rep. 6:38425.| 2016.

Luo D.G., Yue W.W., Ala-Laurila P., Yau K.-W. Activation of visual pigments by light and heat. Science. 332:1307–1312. 2011.

Gozem S., Schapiro I., Ferré N., Olivucci M. On the molecular mechanism of thermal noise in rod photoreceptors. Science. 337:1225-1228. 2012.

Yanagawa M., Kojima K., Yamashita T., Imamoto Y., Matsuyama T., Nakanishi T., Yamano Y., Wada A., Sako Y., Shichida Y. Origin of the low thermal isomerization rate of rhodopsin chromophore. Scient. Rep. 5:11081 |2015.

Barlow R. B. Jr., Birge R.R., Kaplan E., Tallent J.R. On the molecular origin of photoreceptor noise. Nature. 366: 64–66. 1993.

Barlow R.R., Birge R.B. On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors. Biophys. Chem. 55: 115–126. 1995.

Sampath A.P., Baylor D.A. Molecular Mechanism of Spontaneous Pigment Activation in Retinal Cones. Biophys. J. 83: 184-193. 2002.

Fu Y., Kefalov V., Luo D.-G., Xue T., Yau K.-W. Quantal noise from human red cone pigment. Nat. Neurosci. 11:565–571. 2008.

Bókkon I., Vimal R.L.P. Retinal phosphenes and discrete dark noises in rods: A new biophysical framework. J. Photochem. Photobiol. B. 96: 255–259. 2009.

Wang C., Bókkon I., Dai J., Antal I. Spontaneous and visible light-induced ultraweak photon emission from rat eyes. Brain Res. 1369: 1–9. 2011.

Li Z., Dai J. Biophotons Contribute to Retinal Dark Noise. Neurosci. Bull. 32: 246–252. 2016.

Salari V., Scholkmann F., Bokkon I., Shahbazi F., Tuszynski J. The physical mechanism for retinal discrete dark noise: Thermal activation or cellular ultraweak photon emission? PLoS One. 11: e0148336. 2016.

Salari V., Scholkmann F., Vimal R.L.P., Császár N., Aslani M., Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog. Retin. Eye Res. 60: 101-119. 2017.

Govardovskii V.I., Astakhova L.A., Rotov A.Yu.,Firsov M.L. Rejection of the biophoton hypothesis on the origin of photoreceptor dark noise. J. Gen. Physiol. 151: 887–897. 2019.

Craik K.J.W. Origin of visual after-images. Nature. 145: 512. 1940.

van Lier R., Vergeer M., Anstis S. Filling-in afterimage colors between the lines. Curr. Biol. 19: R323–R324. 2009.

Powell G., Bompas A., Sumner P. Making the incredible credible: Afterimages are modulated by contextual edges more than real stimuli. J. Vision. 12: 1–13. 2012.

Zeki S., Cheadle S., Pepper J., Mylonas D. The constancy of colored after-images. Front. Hum. Neurosci. 11: 229. 2017.

Rotov A.Yu., Astakhova L.A., Firsov M.L., Govardovskii V.I. Light Adaptation of Retinal Rods, Adaptation Memory and Afterimages. Russ. J. Physiol. 106: 462 – 473. 2020. (In Russ).

Govardovskii V.I., Fyhrquist N., Reuter T., Kuzmin D., Donner K. In search of the visual pigment template. Visual Neurosci. 17: 509-528. 2000.

Griffin D.R., Hubbard R., Wald G. The sensitivity of the human eye to infra-red radiation. J. Opt. Soc. Am. 37:546-554. 1947.

Pinegin N.I. Scotopic (rod) sensitivity of human eye in red and infrared spectrum. Proc. Acad. Sci. USSR. 56: 811-814. 1947. (In Russ.)

Govardovskii V.I., Zueva L.V. Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vision Res. 14: 1317-1321. 1974.

Kropf A. Intramolecular energy transfer in rhodopsin. Vision Res. 7: 811-818. 1967.

Lipetz L.E. The X-ray and radium phosphenes. Br. J. Ophthalmol. 39: 577 -598. 1955.

Lipetz L.E. Electrophysiology of the x-ray phosphene. Radiat. Res. 2: 306-329. 1955.

Steidley K.D. The Radiation Phosphene. Vision Res. 30: 1139-1143. 1990.

Bachofer C.S., Wittry S.E. Electroretinogram in response to x-ray stimulation. Science. 133: 642-644. 1961.

Doly M., Isabelle D.B., Vincent P., Gaillard G., Meyniel G. Mechanism of the formation of X-ray-induced phosphenes. I. Electrophysiological investigations. Radiat. Res. 82: 93-105. 1980.

Peskin J.C. The effects of irradiation upon visual purple. Am. J. Ophthalmol. 39: 849-854. 1955.

Doly M., Isabelle D.B., Vincent P., Gaillard G., Meyniel G. Mechanism of the formation of X ray-induced phosphenes. II. Photochemical investigations. Radiat. Res. 82: 430-440. 1980.

Pinsky L.S., Osborne W.Z., Bailey J.V., Benson R.E., Thompson L.F. Light flashes

observed by astronauts on Apollo 11 through Apollo 17. Science. 183: 957–959. 1974.

Pinsky L.S., Osborne W.Z., Hoffman R.A., Bailey J.V. Light flashes observed by

astronauts on Skylab 4. Science. 188: 928–930. 1975.

Budinger T.F., Tobias C.A., Huesman R.H., Upham F.T., Wieskamp T.F.,

Hoffman R.A. Apollo–Soyuz light-flashes observations. Life Sci. Space Res. 15:141–146. 1977.

Bidoli V., Casolino M., De Pascale M.P., Furano G., Morselli A., Picozza L.P., Reali E., Sparvoli R., Galper A.M., Ozerov A.V., Popov Yu.V., Vavilov N.R., Alexandrov A.P., Avdeev S.V., Barbiellini G., Bonvicini W., Vacchi A., Zampa N., Bartalucci S., Mazzenga G., Ricci M., Adriani O., Spillantini P., Boezio M., Carlson P., Fuglesang C., Castellini G., Sannita W.G. Study of cosmic rays and light flashes on board space station MIR: the SilEye experiment. Adv. Space Res. 25: 2075–2079. 2000.

Fuglesang C., Narici L., Picozza P., Sannita W.G. Light flashes in low Earth

orbit: survey responses from 59 astronauts. Aviat. Space Envir. Med. 77: 449–452. 2006.

Sannita W.G., Narici L., Picozza P. Positive visual phenomena in space: a scientific case and a safety issue in space travel. Vision Res. 46: 2159–2165. 2006.

Schardt D., Kavatsyuk O., Krämer M., Durante M. Light flashes in cancer patients treated with heavy ions. Brain Stimul. 6:416–417.2013.

Mathis T., Vignot S., Leal C., Caujolle J.-P., Maschi C., Mauget-Faÿsse M., Kodjikian L., Baillif S., Herault J., Thariat J. Mechanisms of phosphenes in irradiated patients. Oncotarget. 8: 64579-64590. 2017.

McNulty P.J., Pease V.P., Pinsky L.S., Bond V.P., Schimmerling W., Vosburgh K.G. Visual sensations induced by relativistic nitrogen nuclei. Science. 178:160-162. 1972.

McNulty P.J., Pease V.P., Bond V.P. Comparison of the light-flash phenomena observed in space and in laboratory experiments. Life Sci. Space Res. 15:135-140. 1977.

McNulty P.J., Pease V.P., Bond V.P. Visual sensations induced by relativistic pions. Radiat. Res. 66: 519-530. 1976

McNulty P.J., Pease V.P., Bond V.P. Muon-induced visual sensations. J. Opt. Soc. Am. 66: 49-55. 1976.

McNulty P.J., Pease V.P., Bond V.P. Visual Phenomena Induced by Relativistic Carbon Ions

With and Without Cerenkov Radiation. Science 201. 341-343. 1978.

Trukhanov K.A., Brindikova T.A., Zak P.P., Lebedev B.M., Spassky A.V., Fedorovich I.B., Ostrovsky M.A. Effects of charged heavy particles on rhodopsin and isolated retina of the eye. Proceed. Russ. Acad. Sci. 377: 715-717. 2001. (In Russ).

Narici L., Paci M., Brunetti V., Rinaldi A., Sannita W.G., De Martino A. Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids. Free Radical Biol. Med. 53. 482-487. 2012.

Narici L., Paci M., Brunetti V., Rinaldi A., Sannita W.G., Carozzo S., De Martino A. Bovine rod rhodopsin: 2. Bleaching in vitro upon 12C ions irradiation as source of effects as light flash for patients and for humans in space. Internat. J. Radiat. Biol., Early Online: 1–5. 2013.

Boll F. Zur Anatomie und Physiologie der retina. Arch. Anat. Physiol .(Physiol Abt). 1877:4–36. (Translated into English and reprinted: Boll F. On the anatomy and physiology of the retina.) Vision Res. 17:1249–1265. 1977.

DeGrip W.J., Rothschild K.J. Structure and mechanisms of vertebrate visual pigments. In Handbook of Biological Physics. Vol. 3. Eds. Stavenga D.G., DeGrip W.J. & Pugh E.N. Jr. Chapt. 1. 1–54. Elsevier Science B.V. North Holland. 2000.

Lewis J.W., van Kuijk F.J.G.M., Carruthers J.A., Kliger D.S. Metarhodopsin III formation and decay kinetics: Comparison of human and bovine rhodopsin. Vision Res. 37: 1–8. 1997.

Korenyak D. A., Govardovskii V. I. The effect of temperature on the slow stages of photolysis of rhodopsin in intact rods of frog and rat retinas. Sensory Systems. 26: 141–149. 2012. (In Russ).

Brindley G.S. The site of electrical excitation of the human eye. J. Physiol. 127: 189 – 200. 1955.

Carpenter R.H. Electrical stimulation of the human eye in different adaptational states. J. Physiol. 221:137-148. 1972.

Wolff J. G., Delacour J., Carpenter R. H. S., Brindley G. S. The patterns seen when alternating electric current is passed through the eye, Quart. J. Exp. Psychol. 20: 1-10. 1968.

Lövsund P., Ōberg P.Å., Nilsson S.E.G., Reuter T. Magnetophosphenes: a quantitative analysis of thresholds. Med. & Biol. Eng. & Comput. 18: 326 – 334. 1980.

Attwell D. Interaction of low frequency electric fields with the nervous system: the retina as a model system. Radiat. Prot. Dosimetry. 106:341-348. 2003.

Matthews G., Fuchs P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat. Rev. Neurosci. 11 (12): 812–22. 2010.

Kalmijn A. J. Electric and magnetic field detection in elasmobranch fishes. Science. 218: 916–918. 1982.

Brown G.R., Ilyinsky O. B. Physiology of electroreceptors. Nauka Publ. Leningrad. 1984. (In Russ).

Schneeweis D.M., Schnapf J.L. Photovoltage of rods and cones in the macaque retina. Science. 268:1053-1056. 1995.

Grüsser O.-J., Hagner M. On the history of deformation phosphenes and the idea of internal light generated in the eye for the purpose of vision. Documenta Ophthalmol. 74: 57-85. 1990.