PDF (English)

Как цитировать

Kubasov, I. V., Bobkov, D. E., Stepanov, A. V., Sukhov, I. B., Chistyakova, O. V., & Dobretsov, M. G. (2020). EVALUATION OF THE T-SYSTEM OF RAT CARDIOMYOCYTES DURING EARLY STAGES OF STREPTOZOTOCIN-INDUCED DIABETES. Российский физиологический журнал им. И. М. Сеченова, 106(9), 1098–1108. https://doi.org/10.31857/S0869813920090046


Disorganization of the T-system of cardiomyocytes is considered an early and critical step in the development of Diabetic Cardiomyopathy (DCM). To test this suggestion, male Wistar rats were injected with streptozotocin (STZ, 30 or 45 mg/kg) and studied one month later. STZ-rats that developed and maintained hyperglycemia (random blood glucose > 11 mM) were designated as hyperglycemic (STZ-HG) rats, while the remaining STZ-rats – as normoglycemic (STZ-NG) animals. The structural integrity of the T-system was investigated using an analysis of confocal images of the left ventricle (LV) sub-epicardium of isolated hearts, stained with the Di-8-ANEPPS. In control, T-system was organized into regular networks of t-tubules aligned with Z-discs of cardiomyocyte’s sarcomeres. Accordingly, the frequency distributions of intervals between neighboring t-tubules (INT, measured along the major cell axis) peaked at a 2 µm value with not more than 21% of INT (per cell) exceeding the 3 µm cut-off. Only 4±3% of the control cardiomyocytes (274 cells, 4 rats) could be considered as deficient, according to this parameter (>21% occurrence of long INT). Compared to control, in the hearts of STZ-NG and STZ-HG rats, the fractions of such deficient cardiomyocytes were statistically significantly higher: 48±13% (STZ-NG, 8 rats, 573 cells) and 76±8% (STZ-HG, 4 rats, 247 cells). Thus, structural changes in the T-system of the rat heart LV cardiomyocytes develop early during chronic hyperglycemia (overt diabetes) as well as during near-normoglycemic stages of diabetes (prediabetes). The relevance of these changes to the development of DCM in subjects with prediabetes remains to be studied.

PDF (English)


Riehle C., Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res. Cardiol. 114(2): 2. 2019.

Dubo S., Gallegos D., Cabrera L., Sobrevia L., Zuniga L., González M. Cardiovascular Action of Insulin in Health and Disease: Endothelial L-arginine transport and cardiac voltage-dependent potassium channels. Front. Physiol. 7: 74. 2016.

Singh R. M., Waqar T., Howarth F. C., Adeghate E., Bidasee K., Singh J. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart. Heart Fail. Rev. 23: 37—54. 2018.

Celentano A., Vaccaro O., Tammaro P., Galderisi M., Crivaro M., Oliviero M., Imperatore G., Palmieri V., Iovino V., Riccardi G., de Divitiis О. Early abnormalities of cardiac function in non-insulin-dependent diabetes mellitus and impaired glucose tolerance. Am. J. Cardiol. 76: 1173—1176. 1995.

Ren J., Sowers J. R., Walsh M. F., Brown R. A. Reduced contractile response to insulin and IGF-I in ventricular myocytes from genetically obese Zucker rats. Am. J. Physiol. Heart Circ. Physiol. 279: H1708—H1714. 2000.

Castagno D., Baird-Gunning J., Jhund P. S., Biondi-Zoccai G., MacDonald M. R., Petrie M. C., Gaita F., McMurray J. J. Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am. Heart J. 162: 938—948. 2011.

Grundy S. M. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J. Am. Coll. Cardiol. 59: 635—643. 2012.

Nunes S., Soares E., Fernandes J., Viana S., Carvalho E., Pereira F. C., Reis F. Early cardiac changes in a rat model of prediabetes: Brain natriuretic peptide overexpression seems to be the best marker. Cardiovasc. Diabetol. 12: 1—11. 2013.

Tadic M., Celic V., Cuspidi C., Ilic S., Pencic B., Radojkovic J., Ivanovic B., Stanisavljevic D., Kocabay G., Marjanovic T. Right heart mechanics in untreated normotensive patients with prediabetes and type 2 diabetes mellitus: A two- and three-dimensional echocardiographic study. J. Am. Soc. Echocardiogr. 28(3): 317—327. 2015.

Huang Y., Cai X., Mai W., Li M., Hu Y. Association between prediabetes and risk of cardiovascular disease and all-cause mortality: systematic review and meta-analysis. Br. Med.J. 355: i5953. 2016.

Ibrahim M., Gorelik J., Yacoub M. H. Terracciano C. M. The structure and function of cardiac t-tubules in health and disease. Proc. Biol. Sci. 278: 2714—2723. 2011.

Louch W. E., Sejersted O. M., Swift F. There goes the neighborhood: pathological alterations in t-tubule morphology and consequences for cardiomyocyte Ca2+ handling. J. Biomed. Biotechnol. 2010: 503906. 2010.

Crossman D. J., Jayasinghe I. D., Soeller C. Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma? Biophys. Rev. 9: 919—929. 2017.

McGrath K. F., Yuki A., Manaka Y., Tamaki H., Saito K., Takekura H. Morphological characteristics of cardiac calcium release units in animals with metabolic and circulatory disorders. J. Muscle Res. Cell Motil. 30: 225—331. 2009.

Stølen T. O., Høydal M. A., Kemi O. J., Catalucci D., Ceci M., Aasum E., Larsen T., Rolim N., Condorelli G., Smith G. L., Wisløff U. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ. Res. 105: 527—536. 2009.

Cagalinec M., Waczulíková I., Uličná O., Chorvat D. Morphology and contractility of cardiac myocytes in early stages of streptozotocin-induced diabetes mellitus in rats. Physiol Res. 62: 489—501. 2013.

Ward M. L., Crossman D. J. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J. Cardiol. 6: 577—584. 2014.

Dallak M., Al-Ani B., Kader D. H. A., Eid R. A., Haidara M. A. Insulin suppresses type 1 Diabetes Mellitus—induced ventricular cardiomyocyte damage associated with the inhibition of biomarkers of inflammation and oxidative stress in rats Pharmacology. 104: 157—165. 2019.

Jourdon P., Feuvray D. Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. J. Physiol. (Lond). 470: 411—429. 1993.

Shimoni Y., Ewart H. S., Severson D. Type I and II models of diabetes produce different modifications of K currents in rat heart: role of insulin. J. Physiol. 507: 485—496. 1998.

Shimoni Y., Ewart H. S., Severson D. Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton. J. Physiol. 514: 735—745. 1999.

Casis O., Gallego M., Iriarte M., Sµnchez-Chapula J. A. Effects of diabetic cardiomyopathy on regional electrophysiologic characteristics of rat ventricle. Diabetologia. 43: 101—109. 2000.

Nygren A., Olson M. L., Chen K. Y., Emmett T., Kargacin G., Shimoni Y. Propagation of the cardiac impulse in the diabetic rat heart: reduced conduction reserve. J. Physiol. 580: 543—560. 2007.

Dobretsov M., Backonja M. M., Romanovsky D., Stimers J. R. Animal models of diabetic neuropathic pain. In: Ma C., Zhang J. M. (eds) Animal models of pain. Neuromethods. V. 49. Humana Press. Totowa. NJ. 147-169. 2011.

Kubasov I. V., Stepanov A., Bobkov D., Radwanski P. B., Terpilowski T. A., Dobretsov M., Gyorke S. Sub-cellular electrical heterogeneity revealed by loose patch recording reflects differential localization of sarcolemmal ion channels in intact rat hearts. Front. Physiol. 9: 61. 2018.

Кубасов И. В., Бобков Д. Е. Оптические и электрические ответы кардиомиоцитов в изолированном сердце крысы при развитии гипоксии. Рос. физиол. журн. им. И.М. Сеченова. 104(6): 670—675. 2018. [Kubasov I. V., Bobkov D. E. Optical and electrical responses of cardiomyocytes in isolated rat heart during development of hypoxia. Russ. J. Physiol. 104(6): 670—675. 2018. (In Russ)].

Bub G., Camelliti P., Bollensdorff C., Stuckey D. J., Picton, G., Burton, R. A., Clarke K., Kohl P. Measurement and analysis of sarcomere length in rat cardiomyocytes in situ and in vitro. Am. J. Physiol. Heart Circ. Physiol. 298: H1616–H1625. 2010.

Moench I., Meekhof K. E., Cheng L. F., Lopatin A. N. Resolution of hypo-osmotic stress in isolated mouse ventricular myocytes causes sealing of t-tubules. Exp. Physiol. 98: 1164—1177. 2013.

Ferrantini C., Coppini R., Sacconi L., Tosi B., Zhang M. L., Wang G. L., de Vries E., Hoppenbrouwers E., Pavone F., Cerbai E., Tesi C., Poggesi C., Henk E.D.J.ter Keurs. Impact of detubulation on force and kinetics of cardiac muscle contraction. J. Gen. Physiol. 143: 783—797. 2014.

Romanovsky D., Wang J., Al-Chaer E. D., Stimers J. R., Dobretsov M. Comparison of metabolic and neuropathy profiles of rats with streptozotocin-induced overt and moderate insulinopenia. Neuroscience. 170: 337—347. 2010.

Hosokawa M., Dolci W., Thorens B. Differential sensitivity of GLUT1- and GLUT2-expressing  cells to streptozotocin. Biochem. Biophys. Res. Com. 289: 1114—1117. 2001.

Szablewski L. Glucose transporters in healthy heart and in cardiac disease Int. J. Cardiol. 230: 70—75. 2017.

Dobretsov M., Romanovsky D., Stimers J. R. Early diabetic neuropathy: Triggers and mechanisms. World J. Gastroenterol. 13(2): 175—191. 2007.