ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ КОГНИТИВНЫХ НАРУШЕНИЙ ПРИ ШИЗОФРЕНИИ
PDF

Ключевые слова

экспериментальное моделирование
шизофрения
когнитивное функционирование
когнитивный дефицит
доклиническое исследование

Как цитировать

Дорофейкова, М. В., Кучер, Е. О., Петрова, Н. Н., & Егоров, А. Ю. (2020). ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ КОГНИТИВНЫХ НАРУШЕНИЙ ПРИ ШИЗОФРЕНИИ. Российский физиологический журнал им. И. М. Сеченова, 106(11), 1325–1339. https://doi.org/10.31857/S0869813920110059

Аннотация

Когнитивные нарушения при шизофрении в настоящее время рассматриваются как третья ключевая группа симптомов наряду с негативной и продуктивной психопатологической симптоматикой. Они встречаются у подавляющего большинства больных и определяют функциональный исход заболевания. В статье представлен обзор литературы, посвященной моделированию когнитивных нарушений при шизофрении на животных. Освещены фармакологические, онтогенетические, генетические модели, их механизмы и характерные проявления, а также способы оценки когнитивных функций у грызунов. В данное время существует множество методов моделирования отдельных когнитивных нарушений, характерных для больных шизофренией, у животных. Такие модели необходимы для дальнейшего развития психофармакологии и изучения патофизиологических механизмов, однако пока что ни одна из них не позволяет воспроизвести всю комплексную и неоднородную структуру когнитивного дефицита пациентов. Особое внимание привлекают онтогенетические модели, которые могут быть применены для исследования факторов риска развития шизофрении и ранних вмешательств при состояниях высокого риска развития психоза.

https://doi.org/10.31857/S0869813920110059
PDF

Литература

Шмуклер А.Б. Шизофрения. М. ГЭОТАР-Медиа. [Shmukler A.B. Shizofrenia [Schizophrenia]. Moscow. GEOTAR-Media. 2017.(In Russ)].

Keefe R.S., Harvey P.D. Cognitive impairment in schizophrenia. Handb. Exp. Pharmacol. 213:11–37. 2012.

Al Dahhan N.Z., De Felice F.G., Munoz D.P. Potentials and Pitfalls of Cross-Translational Models of Cognitive Impairment. Front. Behav. Neurosci. 13:48. 2019.

Green M.F., Nuechterlein K.H., Gold J.M., Barch D.M., Cohen J., Essock S., Fenton W.S., Frese F., Goldberg T.E., Heaton R.K., Keefe R.S., Kern R.S., Kraemer H., Stover E., Weinberger D.R., Zalcman S., Marder S.R. Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol. Psychiatry. 56(5):301-307. 2004.

Young J.W., Powell S.B., Risbrough V., Marston H.M., Geyer M.A. Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol. Ther. 122(2):150-202. 2009.

Moore H., Geyer M.A., Carter C.S., Barch D.M. Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neurosci. Biobehav. Rev. 37(9 Pt B):2087-2091. 2013.

Jones C.A., Watson D.J., Fone K.C. Animal models of schizophrenia. Br. J. Pharmacol. 164(4):1162-1194. 2011.

Lipska B.K., Weinberger D.R. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology. 23:223–239. 2000.

Lazar N.L., Neufeld R., Cain D.P. Contribution of non-primate animal models in understanding the etiology of schizophrenia. J. Psychiatry Neurosci. 36(4):5–29. 2011.

Al Dahhan N.Z., De Felice F.G., Munoz D.P. Potentials and Pitfalls of Cross-Translational Models of Cognitive Impairment. Front. Behav. Neurosci. 13:48. 2019.

Wong A.H., Josselyn S.A. Caution When Diagnosing Your Mouse with Schizophrenia: The Use and Misuse of Model Animals for Understanding Psychiatric Disorders. Biol. Psychiatry. 79(1):32-38. 2016.

Callahan P.M., Terry A.V., Jr. Attention. Handb. Exp. Pharmacol. 228:161-189. 2015.

Young J.W., Light G.A., Marston H.M., Sharp R., Geyer M.A. The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS One. 4(1):e4227. 2009.

Lustig C., Kozak R., Sarter M., Young J.W., Robbins T.W. CNTRICS final animal model task selection: control of attention. Neurosci. Biobehav. Rev. 37(9 Pt B):2099-2110. 2013.

Amitai N., Markou A. Disruption of performance in the five-choice serial reaction time task induced by administration of N-methyl-D-aspartate receptor antagonists: relevance to cognitive dysfunction in schizophrenia. Biol. Psychiatry. 68(1):5-16. 2010.

Nikiforuk A. Assessment of cognitive functions in animal models of schizophrenia. Pharmacol. Rep. 70(4):639-649. 2018.

Dudchenko P.A., Talpos J., Young J., Baxter M.G. Animal models of working memory: a review of tasks that might be used in screening drug treatments for the memory impairments found in schizophrenia. Neurosci. Biobehav. Rev. 37(9 Pt B):2111-2124. 2013.

Gilmour G., Arguello A., Bari A., Brown V.J., Carter C., Floresco S.B., Jentsch D.J., Tait D.S., Young J.W., Robbins T.W. Measuring the construct of executive control in schizophrenia: defining and validating translational animal paradigms for discovery research. Neurosci. Biobehav. Rev. 37(9 Pt B):2125-2140. 2013.

Goetghebeur P.D., Dias R. The attentional set-shifting test paradigm in rats for the screening of novel pro-cognitive compounds with relevance for cognitive deficits in schizophrenia. Curr. Pharm. Des. 20(31):5060-5068. 2014.

Tait D.S., Chase E.A., Brown V.J. Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results. Curr. Pharm. Des. 20(31):5046-5059. 2014.

Grayson B., Leger M., Piercy C., Adamson L., Harte M., Neill J.C. Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav. Brain. Res. 285:176-193. 2015.

Ameen-Ali K.E., Easton A., Eacott M.J. Moving beyond standard procedures to assess spontaneous recognition memory. Neurosci. Biobehav. Rev. 53:37-51. 2015.

Green M.F., Horan W.P., Lee J. Social cognition in schizophrenia. Nat. Rev. Neurosci. 16(10):620-631. 2015.

Wilson C.A., Koenig J.I. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur. Neuropsychopharmacol. 24(5):759-773. 2014.

Wöhr M., Engelhardt K.A., Seffer D., Sungur A.Ö., Schwarting R.K.W. Acoustic communication in rats: effects of social experiences on ultrasonic vocalizations as socioaffective signals. Curr. Top. Behav. Neurosci. 30:67-89. 2017.

Moser P. Evaluating negative-symptom-like behavioural changes in developmental models of schizophrenia. Eur. Neuropsychopharmacol. 24(5):774-787. 2014.

Kimoto S., Makinodan M., Kishimoto T. Neurobiology and treatment of social cognition in schizophrenia: Bridging the bed-bench gap. Neurobiol. Dis. 131:104315. 2019.

Winship I.R., Dursun S.M., Baker G.B., Balista P.A., Kandratavicius L., Maia-de-Oliveira J.P., Hallak J., Howland J.G. An Overview of Animal Models Related to Schizophrenia. Can. J. Psychiatry. 64(1): 5–17. 2019.

Featherstone R.E., Rizos Z., Kapur S., Fletcher P.J. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav. Brain. Res. 189:170–179. 2008.

Sams-Dodd F. A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine. Neuropsychopharmacology. 18(4):293-304. 1998.

Geyer M.A., Ellenbroek B.A. Animal behaviour models of the mechanisms underlying antipsychotic atypicality. Prog. Neuropsychoph. 27:1071-1079. 2003.

Wang M., Pei L., Fletcher P.J., Kapur S., Seeman Ph., Liu S. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization. Mol. Brain. 3:25. 2010.

Кучер Е.О., Егоров А.Ю., Черникова Н.А., Филатова Е.В. Моделирование экспериментальной шизофрении при помощи Леводопы+Карбидопы. Журн. эволюционной биохимии и физиологии. 49(5):352-356. 2013. [Kutcher E.O., Egorov A.Yu., Chernikova N.A., Filatova E.V. Modeling experimental schizophrenia using Levodopa+Carbidopa. J. Evol. Biochem. Physiol. 49(5):352-356. 2013. (In Russ)].

Кучер Е.О., Егоров А.Ю., Филатова Е.В. Влияние этанола на социальное поведение, исследовательскую и двигательную активность крыс при экпериментальном моделировании шизофрении. Психическое здоровье. 7:16-23. 2019. [Kucher E.O., Egorov A.Yu., Filatova E.V. Influence of ethanol on social behavior, exploratory and motor activity of rats in experimental model of schizophrenia. Mental Health. 7:16-23. 2019. (In Russ)].

Javitt D.C., Zukin S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry. 148(10):1301-1308. 1991.

Mouri A., Noda Y., Enomoto T., Nabeshima T. Phencyclidine animal models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem. Int. 51:173–184. 2007.

Amitai N., Semenova S., Markou A. Cognitive–disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology. (Berl.). 193:521–537. 2007.

Neill J.C., Barnes S., Cook S., Grayson B., Idris N.F., McLean S.L., Snigdha S., Rajagopal L., Harte M.K. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol. Ther. 128(3):419-432. 2010.

Tenn C.C., Kapur S., Fletcher P.J. Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition. Psychopharmacology. (Berl.). 180(2):366-376. 2005.

Takahashi M., Kakita A., Futamura T., Watanabe Y., Mizuno M., Sakimura K., Castren E., Nabeshima T., Someya T., Nawa H. Sustained brain-derived neurotrophic factor up-regulation and sensorimotor gating abnormality induced by postnatal exposure to phencyclidine: comparison with adult treatment. J. Neurochem. 99:770–780. 2006.

Bartsch J.C., Schott B.H., Behr J. Hippocampal dysfunction in schizophrenia and aberrant hippocampal synaptic plasticity in rodent model psychosis: a selective review. Pharmacopsychiatry.

doi: 10.1055/a-0960-9846. 2019

Hernández-Frausto M., López-Rubalcava C., Galván E.J. Progressive Alterations in Synaptic Transmission and Plasticity of Area CA1 Precede the Cognitive Impairment Associated with Neonatal Administration of MK-801. Neuroscience. 404:205-217. 2019.

Faatehi M., Basiri M., Nezhadi A., Shabani M., Masoumi-Ardakani Y., Soltani Z., Nozari M. Early enriched environment prevents cognitive impairment in an animal model of schizophrenia induced by MK-801: Role of hippocampal BDNF. Brain. Res. 1711:115-119. 2019.

Kozela E., Krawczyk M., Kos T., Juknat A., Vogel Z., Popik P. Cannabidiol improves cognitive impairment and reverses cortical transcriptional changes induced by ketamine, in schizophrenia-like model in rats. Mol. Neurobiol. 57(3):1733-1747. 2020.

Wang L., Alachkar A., Sanathara N., Belluzzi J.D., Wang Z., Civelli O. A methionine-induced animal model of schizophrenia: face and predictive validity. Int. J. Neuropsychopharmacol. 18(12): pyv054. 2015.

Tremolizzo L., Carboni G., Ruzicka W.B., Mitchell C.P., Sugaya I., Tueting P., Sharma R., Grayson D.R., Costa E., Guidotti A. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. USA. 99:17095–17100. 2002.

Cattabeni F., DiLuca M. Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol. Physiol. Rev. 77:199–215. 1997.

Matricon J., Bellon A., Frieling H., Kebir O., Le Pen G., Beuvon F., Daumas-Duport C., Jay T.M., Krebs M.-O. Neuropathological and reelin deficiencies in the hippocampal formation of rats exposed to MAM; differences and similarities with schizophrenia. PLoS ONE. 5:e10291. 2010.

Moore H., Jentsch J.D., Ghajarnia M., Geyer M.A., Grace A.A. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol. Psychiatry. 60:253–264. 2006.

Hazane F., Krebs M.O., Jay T.M., Le Pen G. Behavioral perturbations after prenatal neurogenesis disturbance in female rat. Neurotox. Res. 15(4):311-320. 2009.

Potasiewicz A., Holuj M., Litwa E., Gzielo K., Socha L., Popik P., Nikiforuk A. Social dysfunction in the neurodevelopmental model of schizophrenia in male and female rats: Behavioural and biochemical studies. Neuropharmacology. 170:108040. 2020.

Zuckerman L., Rehavi M., Nachman R., Weiner I. Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology. 28(10):1778-1789. 2003.

Zuckerman L., Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J. Psychiatr. Res. 39(3):311-323. 2005.

Howland J.G., Cazakoff B.N., Zhang Y. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience. 201:184–198. 2012.

Machado C.J., Whitaker A.M., Smith S.E., Patterson P.H., Bauman M.D. Maternal immune activation in nonhuman primates alters social attention in juvenile offspring. Biol. Psychiatry. 77(9):823–832. 2015.

Meyer U. Prenatal poly (I: C) exposure and other developmental immune activation models in rodent systems. Biol. Psychiatry. 75:307–315. 2014.

Zhang Y., Cazakoff B.N., Thai C.A., Howland J.G. Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacol. 62(3):1299–1307. 2012.

Careaga M., Murai T., Bauman M.D. Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol. Psychiatry. 81(5):391–401. 2017.

Giovanoli S., Weber L., Meyer U. Single and combined effects of prenatal immune activation and peripubertal stress on parvalbumin and reelin expression in the hippocampal formation. Brain. Behav. Immun. 40:48-54. 2014.

Paylor J.W., Lins B.R., Greba Q., Moen N., de Moraes R.S., Howland J.G., Winship I.R. Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation. Sci. Rep. 6:375-380. 2016.

Steullet P., Cabungcal J.H., Coyle J., Didriksen M., Gill K., Grace A.A., Hensch T.K., LaMantia A.S., Lindemann L., Maynard T.M., Meyer U., Morishita H., O'Donnell P., Puhl M., Cuenod M., Do K. Q. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol. Psychiatry. 22(7):936-943. 2017.

Shin Yim Y., Park A., Berrios J., Lafourcade M., Pascual L.M., Soares N., Yeon Kim J., Kim S., Kim H., Waisman A., Littman D.R., Wickersham I.R., Harnett M.T., Huh J.R., Choi G.B. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 549(7673):482-487. 2017.

Fone K.C., Porkess M.V. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 32(6):1087-1102. 2008.

Marsden C.A., King M.V., Fone K.C. Influence of social isolation in the rat on serotonergic function and memory--relevance to models of schizophrenia and the role of 5-HT₆ receptors. Neuropharmacology. 61(3):400-407. 2011.

Schubert M.I., Porkess M.V., Dashdorj N., Fone K.C., Auer D.P. Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience. 159(1):21-30. 2009.

Silva-Gómez A.B., Rojas D., Juárez I., Flores G. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res. 983(1-2):128-136. 2003.

Bloomfield C., French S.J., Jones D.N., Reavill C., Southam E., Cilia J., Totterdell S. Chandelier cartridges in the prefrontal cortex are reduced in isolation reared rats. Synapse. 62(8):628-631. 2008.

Toua C., Brand L., Möller M., Emsley R.A., Harvey B.H. The effects of sub-chronic clozapine and haloperidol administration on isolation rearing induced changes in frontal cortical N-methyl-D-aspartate and D1 receptor binding in rats. Neuroscience. 165(2):492-499. 2010.

Quan M.N., Tian Y.T., Xu K.H., Zhang T., Yang Z. Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience. 169(1):214-222. 2010.

Weiss I.C., Feldon J., Domeney A.M. Isolation rearing-induced disruption of prepulse inhibition: further evidence for fragility of the response. Behav. Pharmacol. 10(2):139-149. 1999.

Li N., Wu X., Li L. Chronic administration of clozapine alleviates reversal-learning impairment in isolation-reared rats. Behav. Pharmacol. 18(2):135-145. 2007.

Fone K.C.F., Watson D.J.G., Billiras R.I., Sicard D.I., Dekeyne A., Rivet J.M., Gobert A., Millan M.J. Comparative pro-cognitive and neurochemical profiles of glycine modulatory site agonists and glycine reuptake inhibitors in the rat: potential relevance to cognitive dysfunction and its management. Mol. Neurobiol.

doi: 10.1007/s12035-020-01875-9. 2020

Tseng K.Y., Chambers R.A., Lipska B.K. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav. Brain Res. 204:295–305. 2009.

Lipska B.K. Using animal models to test a neurodevelopmental hypothesis of schizophrenia. Rev. Psychiatry. Neurosci. 29:282–286. 2004.

Brady A.M., Saul R.D., Wiest M.K. Selective deficits in spatial working memory in the neonatal ventral hippocampal lesion rat model of schizophrenia. Neuropharmacology. 59:605–611. 2010.

Marquis J.P., Goulet S., Dore F.Y. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats. Neurobiol. Learn. Mem. 90:339–346. 2008.

Tse M.T., Piantadosi P.T., Floresco S.B. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol.Psychiatry. 77(11):929-939. 2015.

Farrell M.S., Werge T., Sklar P., Owen M.J., Ophoff R.A., O'Donovan M.C., Corvin A., Cichon S., Sullivan P.F. Evaluating historical candidate genes for schizophrenia. Mol. Psychiatry. 20(5):555–562. 2015.

Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 511(7510):421–427. 2014.

Jaaro-Peled H. Gene models of schizophrenia: DISC1 mouse models. Prog. Brain Res. 179:75–86. 2009.

Krueger D., Howell J., Hebert B., Olausson P., Taylor J., Nairn A. Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology. (Berl.). 189:95–104. 2006.

Grimm C.M., Aksamaz S., Schulz S., Teutsch J., Sicinski P., Liss B., Kätzel D. Schizophrenia-related cognitive dysfunction in the Cyclin-D2 knockout mouse model of ventral hippocampal hyperactivity. Transl. Psychiatry. 8(1):212. 2018.

Mukherjee A., Carvalho F., Eliez S., Caroni P. Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell. 178(6):1387-1402.e14. 2019.

Glenthøj L.B., Hjorthøj C., Kristensen T.D., Davidson C.A., Nordentoft M. The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review. NPJ Schizophr. 3:1–7. 2017.