УРЕМИЧЕСКИЙ СИНДРОМ ВЫЗЫВАЕТ НАРУШЕНИЕ ДЕФОРМАЦИОННО-ФУНКЦИОНАЛЬНЫХ ХАРАКТЕРИСТИК ЭРИТРОЦИТОВ У ПАЦИЕНТОВ ХРОНИЧЕСКОГО ГЕМОДИАЛИЗА
PDF

Ключевые слова

хронический гемодиализ
эритроциты
аммонийный стресс
уремия
уремический синдром
лазерная дифракция
азотистый гомеостаз

Как цитировать

Борисов, Ю. А., Судницына, Ю. С., Власов, Т. Д., Дульнева, Л. В., Аболмасов, В. О., Миндукшев, И. В., & Смирнов, А. В. (2020). УРЕМИЧЕСКИЙ СИНДРОМ ВЫЗЫВАЕТ НАРУШЕНИЕ ДЕФОРМАЦИОННО-ФУНКЦИОНАЛЬНЫХ ХАРАКТЕРИСТИК ЭРИТРОЦИТОВ У ПАЦИЕНТОВ ХРОНИЧЕСКОГО ГЕМОДИАЛИЗА. Российский физиологический журнал им. И. М. Сеченова, 106(8), 1025–1040. извлечено от https://rusjphysiol.org/index.php/rusjphysiol/article/view/782

Аннотация

Хроническая болезнь почек в терминальной, V стадии (ХБП V), сопровождается структурными и функциональными нарушениями эритроцитов, представляющими угрозу их стабильному функционированию, однако механизмы этих явлений недостаточно изучены. Методом лазерной дифракции было исследовано влияние ХБП V и самого сеанса гемодиализа (ГД) на деформационно-функциональные показатели эритроцитов пациентов c ХБП V. ГД сессия не влияла на деформационные характеристики эритроцитов. Однако было показано двухэтапное ухудшение деформационно-функциональных свойств эритроцитов у пациентов с ХБП V: стадия увеличения хрупкости эритроцитов (повышение Vi, снижение Tmax) у пациентов, находящихся на ХГД до 25 месяцев (группа 1), и стадия увеличения ригидности (снижение Vi, увеличение Tmax) у пациентов, находящихся на хроническом гемодиализе (ХГД) от 25 до 250 месяцев (группа 2). В междиализном промежутке было выявлено увеличение концентрации уремических токсинов, приводящее к гиперосмоляльности плазмы (до 330 мОсм/кгH2O в группе 1 и до 340 мОсм/кгH2O в группе 2), однако концентрация Na+ и глюкозы оставались в пределах нормы. Таким образом, мы показали отсутствие влияния самой ГД сессии, вместе с тем, было выявлено двухэтапное ухудшение деформационных характеристик эритроцитов пациентов с ХБП V, вызванное уремическим синдромом, которое может приводить к почечной анемии и сердечно-сосудистым осложнениям, характерным для пациентов ХГД.

PDF

Литература

Bonomini M., Pieroni L., Ronci M., Sirolli V., Urbani A. Blood Cell Proteomics in Chronic Kidney Disease. Open Urology and Nephrology. 11: 28-38. 2018.

Liu Z.Z., Bullen A., Li Y., Singh P. Renal Oxygenation in the Pathophysiology of Chronic Kidney Disease. Front. Physiol. 8: 385. 2017.

Fishbane S., Spinowitz B. Update on Anemia in ESRD and Earlier Stages of CKD: Core Curriculum 2018. Am. J. Kidney. Dis. 71(3):423–435. 2018.

Bowry S.K., Gatti E. Impact of hemodialysis therapy on anemia of chronic kidney disease: the potential mechanisms. Blood Purif. 32(3):210–219. 2011.

Scherer A., Günther O.P., Balshaw R.F., Hollander Z., Wilson-McManus J., Ng R., McMaster W.R., McManus B.M., Keown P.A. Alteration of human blood cell transcriptome in uremia. BMC Med. Genomics. 6:23. 2013.

Sotirakopoulos N., Tsitsios T., Stambolidou M., Athanasiou G, Peiou M, Kokkinou V, Mavromatidis K. The red blood cell deformability in patients suffering from end stage renal failure on hemodialysis or continuous ambulatory peritoneal dialysis. Ren. Fail. 26(2):179–183. 2004.

Bae S.Y., Jeon J.W., Kim S.H., Baek C.H., Jang J.W., Yang W.S., Kim S.B., Park S.-K., Lee S.K., Kim H. Usefulness of mid-week hemoglobin measurement for anemia management in patients undergoing hemodialysis: a retrospective cohort study. BMC Nephrol. 20(1):295. 2019.

Fuertinger D.H., Kappel F., Zhang H., Thijssen S., Kotanko P. Prediction of hemoglobin levels in individual hemodialysis patients by means of a mathematical model of erythropoiesis. PLoS One. 13(4):e0195918. 2018.

Bonomini M., Del Vecchio L., Sirolli V., Locatelli F. New Treatment Approaches for the Anemia of CKD. Am. J. Kidney Dis. 67(1):133–142. 2016.

Cernaro V., Coppolino G., Visconti L., Rivoli L., Lacquaniti A., Santoro D., Buemi A., Loddo S., Buemi M. Erythropoiesis and chronic kidney disease–related anemia: From physiology to new therapeutic advancements. Med. Res. Rev. 39: 427– 460. 2019.

Brenner N., Kommalapati A., Ahsan M., Ganguli A. Red cell transfusion in chronic kidney disease in the United States in the current era of erythropoiesis stimulating agents. J. Nephrol. [published online ahead of print, 2019 Nov 28]. 2019.

Luo J.F., Li J.H., Nie J.J., Li P.P., Zhang H.D., Ma Y.J. Effect of Hemodialysis on the Red Blood Cell Life Span in Patients with End-Stage Kidney Disease. Ther. Apher. Dial. 23(4):336–340. 2019.

Bonomini M., Pandolfi A., Sirolli V., Arduini A., Liberato L.D., Di Pietro N. Erythrocyte Alterations and Increased Cardiovascular Risk in Chronic Renal Failure. Nephro-Urol. Mon. 9(3):e45866. 2017.

Babitt J.L., Lin H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 23(10):1631–1634. 2012.

Ertan N.Z., Bozfakioglu S., Ugurel E., Sinan M., Yalcin O. Alterations of erythrocyte rheology and cellular susceptibility in end stage renal disease: Effects of peritoneal dialysis. PLoS One. 12(2):e0171371. 2017.

Kuhn V., Diederich L., Keller T.C.S. 4th, Kramer C.M., Lückstädt W., Panknin C., Suvorava T., Isakson B.E., Kelm M., Cortese-Krott M.M. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid. Redox. Signal. 26(13):718–742. 2017.

Kruse A., Uehlinger D.E., Gotch F., Kotanko P., Levin N.W. Red blood cell lifespan, erythropoiesis and hemoglobin control. Contrib. Nephrol. 161:247–254. 2008.

Ayala A., Muñoz M.F., Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014: 360438. 2014

Sindhu R.K., Ehdaie A., Farmand F., Dhaliwal K.K., Nguyen T., Zhan C.D., Roberts C.K., Vaziri N.D. Expression of catalase and glutathione peroxidase in renal insufficiency. Biochim. Biophys. Acta. 1743(1-2):86–92. 2005.

Gao C., Xie R., Yu C., Ma R., Dong W., Meng H., Zhang Y., Si Y., Zhang Z., Novakovic V., Zhang Y., Kou J., Bi Y., Li B., Xie R., Gilbert G.E., Zhou J., Shi J. Thrombotic Role of Blood and Endothelial Cells in Uremia through Phosphatidylserine Exposure and Microparticle Release. PLoS One. 10(11):e0142835. 2015.

Bonomini M., Sirolli V., Merciaro G., Antidormi T., Di Liberato L., Brummer U., Papponetti M., Cappelli P., Di Gregorio P., Arduini A. Red blood cells may contribute to hypercoagulability in uraemia via enhanced surface exposure of phosphatidylserine. Nephrol. Dial. Transplant. 20(2):361–366. 2005.

Liu L., Huang S., Xu X., Han J. Study of individual erythrocyte deformability susceptibility to INFeD and ethanol using a microfluidic chip. Sci. Rep. 6: 22929. 2016.

Huisjes R., Bogdanova A., van Solinge W.W., Schiffelers R.M., Kaestner L., van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front. Physiol. 9:656. 2018.

Kikuchi Y., Koyama T., Koyama Y., Tozawa S., Arai T., Horimoto M., Kakiuchi Y. Red blood cell deformability in renal failure. Nephron. 30(1): 8-14. 1982.

Pretini V., Koenen M.H., Kaestner L., Fens M.H.A.M., Schiffelers R.M., Bartels M., Van Wijk R. Red Blood Cells: Chasing Interactions. Front. Physiol. 10:945. 2019.

Barns S., Balanant M.A., Sauret E., Flower R., Saha S., Gu Y. Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method. Biomed. Eng. Online. 16(1):140. 2017.

Brown C.D., Ghali H.S., Zhao Z., Thomas L.L., Friedman E.A. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney Int. 67(1):295-300. 2005.

Faustino V., Rodrigues R.O., Pinho D., Costa E., Santos-Silva A., Miranda V., Amaral J.S., Lima R. A Microfluidic Deformability Assessment of Pathological Red Blood Cells Flowing in a Hyperbolic Converging Microchannel. Micromachines (Basel).10(10): pii: E645. 2019.

Mourikis P., Helten C., Dannenberg L., Hohlfeld T., Stegbauer J., Petzold T., Levkau B., Zeus T., Kelm M., Polzin A. Platelet reactivity in patients with chronic kidney disease and hemodialysis. J. Thromb. Thrombolysis. 49(1):168–172. 2020.

Dutka P. Guarding against hidden hemolysis during dialysis:an overview. Nephrol. Nurs. J. 35:45. 2008.

Medina A., Ellis C., Levitt M.D. Use of alveolar carbon monoxide measurements to assess red blood cell survival in hemodialysis patients. Am. J. Hematol. 46:91–4. 1994.

Ahmadmehrabi S., Tang W.H.W. Hemodialysis-induced cardiovascular disease. Semin. Dial. 31(3):258–267. 2018.

Vos F.E., Schollum J.B., Coulter C.V., Doyle T.C., Duffull S.B., Walker R.J. Red blood cell survival in long-term dialysis patients. Am. J. Kidney Dis. 58(4):591–598. 2011.

Mindukshev I.V., Senchenkova E.Y., Goncharov N.V., Vivulanets E.V., Krivoshlyk V.V. New methods for studing platelets and red blood cells, based upon the low-angle light scattering technique. In: Handbook of hematology research. Eds. Tondre R., Lebegue C. New York. Nova Biomed. Books. 2010.

Mindukshev I., Gambaryan S., Kehrer L., Schuetz C., Kobsar A., Rukoyatkina N., Nikolaev V. O., Krivchenko A., Watson S. P., Walter U., Geiger J. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors. Clin. Chem. Lab. Med. 50. (7):1253-62. 2012.

Mindukshev I., Kudryavtsev I., Serebriakova M., Trulioff A., Gambaryan S., Sudnitsyna J., Khmelevskoy D., Voitenko N., Avdonin P., Jenkins R., Goncharov N. Flow cytometry and light scattering technique in evaluation of nutraceuticals. In: Neutraceuticals. Efficacy, Safety and Toxicity. Elsevier. 319-332. 2016. ISBN 978-0-12-802147-7

Sudnitsyna J.S., Skvertchinskaya E.A., Dobrylko I.A., Nikitina E.R., Krivchenko A.I., Gambaryan S.P., Mindukshev I.V. Human Erythrocyte Ammonium Transport Is Mediated by Functional Interaction of Ammonium (RhAG) and Anion (AE1) Transporters. Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 10 (4): 301–310. 2016.

Mindukshev I.V., Sudnitsyna J.S., Skverchinskaya E.A., Andreyeva A.Yu., Dobrylko I.A., Senchenkova E.Yu., Krivchenko A.I., Gambaryan S.P. Erythrocytes’ reactions to osmotic, ammonium, and oxidative stress are inhibited under hypoxia. Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 13(4):352-364. 2019.

Jacobs M. H. Observation of the hemolytic actions of ammonium salts. Am. J. Physiol. 68: 134 – 135. 1924.

Chernyshev A.V., Tarasov P.A., Semianov K.A., Nekrasov V.M., Hoekstra A.G., Maltsev V.P. Erythrocyte lysis in isotonic solution of ammonium chloride: Theoretical modeling and experimental verification. J. Theor. Biol. 251: 93-107. 2008.

Sudnitsyna J.S., Gambaryan S.P., Krivchenko A.I., Mindukshev I.V. Ammonia/Ammonium Influx in Human Erythrocytes. Biol. Ьembrany. 35(5): 398-402. 2018.

Glassock R.J. Uremic toxins: what are they? An integrated overview of pathobiology and classification. J. Ren. Nutr. 18(1):2–6. 2008.

Deltombe O., Van Biesen W., Glorieux G., Massy Z., Dhondt A., Eloot S. Exploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis. Toxins (Basel). 7(10):3933–3946. 2015.

Bonan N.B., Steiner T.M., Kuntsevich V., Virzì G.M., Azevedo M., Nakao L.S., Barreto F.C., Ronco C., Thijssen S., Kotanko P., Pecoits-Filho R., Moreno-Amaral A.N. Uremic Toxicity-Induced Eryptosis and Monocyte Modulation: The Erythrophagocytosis as a Novel Pathway to Renal Anemia. Blood Purif. 41(4):317–323. 2016.

Bosman G.J. Survival of red blood cells after transfusion: processes and consequences. Front. Physiol. 4:376. 2013.

Tozoni S.S., Dias G.F., Bohnen G., Grobe N., Pecoits-Filho R., Kotanko P., Moreno-Amaral A.N. Uremia and Hypoxia Independently Induce Eryptosis and Erythrocyte Redox Imbalance. Cell Physiol. Biochemistry. 53:794–804. 2019.

Swietach P., Tiffert T., Mauritz J.M., Seear R., Esposito A., Kaminski C.F., Lew V.L., Vaughan-Jones R.D. Hydrogen ion dynamics in human red blood cells. J. Physiol. 588(Pt 24):4995–5014. 2010.

Bruce L.J., Beckmann R., Ribeiro M.L., Peters L.L., Chasis J.A., Delaunay J., Mohandas N., Anstee D.J., Tanner M.J. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood. 101(10):4180–4188. 2003.

Evans E.A., Hochmuth R.M. Membrane viscoelasticity. Biophys. J. 16(1):1–11. 1976.

Oldenborg P.A., Zheleznyak A., Fang Y.F., Lagenaur C.F., Gresham H.D., Lindberg F.P. Role of CD47 as a marker of self on red blood cells. Science. 288(5473):2051–2054. 2000.

Costa E., Rocha S., Rocha-Pereira P., Castro E, Miranda V, do Sameiro Faria M., Loureiro A., Quintanilha A., Belo L., Santos-Silva A. Altered erythrocyte membrane protein composition in chronic kidney disease stage 5 patients under haemodialysis and recombinant human erythropoietin therapy. Blood Purif. 26(3):267–273. 2008.

Alvarez-Llamas G., Zubiri I., Maroto A.S., de la Cuesta F., Posada-Ayala M., Martin-Lorenzo M., Barderas M.G., Fernandez-Fernandez B., Ramos A., Ortiz A., Vivanco F. A role for the membrane proteome in human chronic kidney disease erythrocytes. Transl. Res. 160(5):374–383. 2012.

Antonelou M.H., Kriebardis A.G., Velentzas A.D., Kokkalis A.C., Georgakopoulou S.C., Papassideri I.S. Oxidative stress-associated shape transformation and membrane proteome remodeling in erythrocytes of end stage renal disease patients on hemodialysis. J. Proteomics. 74(11):2441–2452. 2011.

Itano H.A., Keitel H.G., Thompson D. Hyposthenuria in sickle cell anemia: a reversible renal defect. J. Clin. Invest. 35(9):998–1007. 1956.

Sugie J., Intaglietta M., Sung L.A. Water transport and homeostasis as a major function of erythrocytes. Am. J. Physiol. Heart Circ. Physiol. 314(5):H1098–H1107. 2018.

Moodalbail D.G., Reiser K.A., Detre J.A., Schultz R.T., Herrington J.D., Davatzikos C., Doshi J.J., Erus G., Liu H.S., Radcliffe J., Furth S.L., Hooper S.R. Systematic review of structural and functional neuroimaging findings in children and adults with CKD. Clin. J. Am. Soc. Nephrol. 8(8):1429–1448. 2013.

Drew D.A., Weiner D.E., Sarnak M.J. Cognitive Impairment in CKD: Pathophysiology, Management, and Prevention. Am. J. Kidney Dis. 74(6):782–790. 2019.

Hooper S.R., Gerson A.C., Butler R.W., Gipson D.S., Mendley S.R., Lande M.B., Shinnar S., Wentz A., Matheson M., Cox C., Furth S.L., Warady B.A. Neurocognitive functioning of children and adolescents with mild-to-moderate chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6(8):1824–1830. 2011.

Seidel U.K., Gronewold J., Volsek M., Todica O., Kribben A., Bruck H., Hermann D.M. The prevalence, severity, and association with HbA1c and fibrinogen of cognitive impairment in chronic kidney disease. Kidney Int. 85(3):693–702. 2014.

Liu H.S., Hartung E.A., Jawad A.F., Ware J.B., Laney N., Port A.M., Gur R.C., Hooper S.R., Radcliffe J., Furth S.L., Detre J.A. Regional Cerebral Blood Flow in Children and Young Adults with Chronic Kidney Disease. Radiology. 288(3):849–858. 2018.

Gupta S., Fenves A.Z., Hootkins R. The Role of RRT in Hyperammonemic Patients. Clin. J. Am. Soc. Nephrol. 11(10):1872–1878. 2016.