АЛЬФА-МЕЛАНОЦИТСТИМУЛИРУЮЩИЙ ГОРМОН КАК РЕГУЛЯТОР ГИПОТАЛАМО-ГИПОФИЗАРНОЙ ОСИ
PDF

Ключевые слова

альфа-меланоцитстимулирующий гормон
гипоталамо-гипофизарная ось
стресс
аркуатное ядро
меланокортины
кортиколиберин
тиреолиберин

Как цитировать

Долотов, О. В. (2020). АЛЬФА-МЕЛАНОЦИТСТИМУЛИРУЮЩИЙ ГОРМОН КАК РЕГУЛЯТОР ГИПОТАЛАМО-ГИПОФИЗАРНОЙ ОСИ. Российский физиологический журнал им. И. М. Сеченова, 106(6), 683–695. https://doi.org/10.31857/S0869813920060047

Аннотация

Альфа-меланоцитстимулирующий гормон (α-МСГ) обладает широким спектром биологических активностей и продуцируется в гипофизе, гипоталамусе, стволе мозга, гиппокампе и ряде периферических тканей. α-МСГ и активируемые им рецепторы критически вовлечены в процессы регуляции энергетического баланса и массы тела. Существует очень тесная взаимосвязь на функциональном и нейроанатомическом уровнях между системой регуляции энергетического баланса и нейроэндокринного стрессового ответа. Обзор cфокусирован на вовлеченности α-МСГ в регуляцию гипоталамо-гипофизарной оси (ГГО). Данные, полученные с помощью центрального введения α-МСГ и его аналогов и с использованием генетически модифицированных животных, свидетельствуют о том, что α-МСГ аркуатного ядра гипоталамуса активирует ГГО как напрямую, так и через ряд промежуточных структур мозга, в том числе, через медиальную область миндалины. В связи с важнейшей ролью миндалины в интеграции стрессового ответа на нейроэндокринном и поведенческом уровнях, очевидно, что α-МСГ является важным участником этого процесса. Роль этого пептида в регуляции ГГО другими лимбическими структурами, гиппокампом и префронтальной корой остается неисследованной. Хотя основную роль в регуляции активности ГГО, по-видимому, играют меланокортиновые рецепторы MC4R, ряд данных указывает на возможное участие и рецепторов MC3R или MC5R. Известная противовоспалительная активность α-МСГ проявляется в его способности ослаблять вызванную центральным воспалением активацию ГГО. Гипофизарный α-МСГ секретируется в кровоток при стрессовом ответе, однако, в отличие от АКТГ его секреция не тормозится глюкокортикоидами и стимулируется адреналином. Роль циркулирующего α-МСГ в стрессовом ответе остается неясной, но его возможной функцией является независимая от глюкокортикоидов негативная регуляция ГГО.

https://doi.org/10.31857/S0869813920060047
PDF

Литература

LaHoste G. J., Olson G. A., Kastin A. J., Olson R. D. Behavioral effects of melanocyte stimulating hormone. Neurosci. Biobehav. Rev. 4(1):9-16. 1980.

Левицкая Н. Г., Каменский А. А. Меланокортиновая система. Успехи физиол.наук. 40(1):44-65. 2009. [Levitskaya N. G., Kamensky A.A. Melanocortin system. Usp. Fisiol. Nauk. 40(1):44-65. 2009. (In Russ)].

Getting S. J. Targeting melanocortin receptors as potential novel therapeutics. Pharmacol. Ther. 111(1):1-15. 2006.

Catania A., Colombo G., Rossi C., Carlin A., Sordi A., Lonati C., Turcatti F., Leonardi P., Grieco P., Gatti S. Antimicrobial properties of alpha-MSH and related synthetic melanocortins. Sci.World J. 6:1241-1246. 2006.

Lee M., Wardlaw S. L. The central melanocortin system and the regulation of energy balance. Front. Biosci. 12:3994-4010. 2007.

Ulrich-Lai Y. M., Ryan K. K. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metabol. 19(6):910-925. 2014.

Catania A., Airaghi L., Colombo G., Lipton J. M. Alpha-melanocyte-stimulating hormone in normal human physiology and disease states. Trends Endocrinol.Metab. 11(8):304-308. 2000.

Oliver C., Porter J. C. Distribution and Characterization of a-Melanocyte-Stimulating Hormone in the Rat Brain. Endocrinology. 102(3):697-705. 1978.

Carr J. A., Saland L. C., Samora A., Desai S., Benevidez S. Stress-induced peptide release from rat intermediate pituitary. An ultrastructural analysis. Cell Tissue Res. 261(3):589-593. 1990.

Usategui R., Oliver C., Vaudry H., Lombardi G., Rozenberg I., Mourre A. M. Immunoreactive alpha-MSH and ACTH levels in rat plasma and pituitary. Endocrinology. 98(1):189-196. 1976.

Vecsernyes M., Julesz J. Specific radioimmunoassay of alpha-melanocyte-stimulating hormone in rat plasma. Exp. Clin. Endocrinol. 93(1):45-51. 1989.

Kvetnansky R., Tilders F. J., van Zoest I. D., Dobrakovova M., Berkenbosch F., Culman J., Zeman P., Smelik P. G. Sympathoadrenal activity facilitates beta-endorphin and alpha-MSH secretion but does not potentiate ACTH secretion during immobilization stress. Neuroendocrinology. 45(4):318-324. 1987.

Berkenbosch F., Vermes I., Tilders F. J. The beta-adrenoceptor-blocking drug propranolol prevents secretion of immunoreactive beta-endorphin and alpha-melanocyte-stimulating hormone in response to certain stress stimuli. Endocrinology. 115(3):1051-1059. 1984.

Proulx-Ferland L., Labrie F., Dumont D., Cote J., Coy D. H., Sveiraf J. Corticotropin-releasing factor stimulates secretion of melanocyte-stimulating hormone from the rat pituitary. Science. 217(4554):62-63. 1982.

Catania A., Gatti S., Colombo G., Lipton J. M. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol. Rev. 56(1):1-29. 2004.

Chen M., Aprahamian C. J., Kesterson R. A., Harmon C. M., Yang Y. Molecular identification of the human melanocortin-2 receptor responsible for ligand binding and signaling. Biochemistry. 46(40):11389-11397. 2007.

Shukla C., Koch L. G., Britton S. L., Cai M., Hruby V. J., Bednarek M., Novak C. M. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats. Neuroscience. 310:252-267. 2015.

Schioth H. B., Muceniece R., Larsson M., Wikberg J. E. The melanocortin 1, 3, 4 or 5 receptors do not have a binding epitope for ACTH beyond the sequence of alpha-MSH. J. Endocrinol. 155(1):73-78. 1997.

Chai B. X., Neubig R. R., Millhauser G. L., Thompson D. A., Jackson P. J., Barsh G. S., Dickinson C. J., Li J. Y., Lai Y. M., Gantz I. Inverse agonist activity of agouti and agouti-related protein. Peptides. 24(4):603-609. 2003.

Ericson M. D., Singh A., Tala S. R., Haslach E. M., Dirain M. L. S., Schaub J. W., Flores V., Eick N., Lensing C. J., Freeman K. T., Smeester B. A., Adank D. N., Wilber S. L., Speth R., Haskell-Luevano C. Human β-Defensin 1 and β-Defensin 3 (Mouse Ortholog mBD14) Function as Full Endogenous Agonists at Select Melanocortin Receptors. J. Med. Chem. 61(8):3738-3744. 2018.

Froy O., Hananel A., Chapnik N., Madar Z. Differential expression of rat beta-defensins. IUBMB Life. 57(1):41-43. 2005.

Nix M. A., Kaelin C. B., Ta T., Weis A., Morton G. J., Barsh G. S., Millhauser G. L. Molecular and functional analysis of human β-defensin 3 action at melanocortin receptors. Chemistry & Biology. 20(6):784-795. 2013.

Wilson J. F. Low permeability of the blood-brain barrier to nanomolar concentrations of immunoreactive alpha-melanotropin. Psychopharmacology. 96(2):262-266. 1988.

Harno E., Ramamoorthy T. G., Coll A. P., White A. POMC: The Physiological Power of Hormone Processing. Physiol. Rev. 98(4):2381-2430. 2018.

Slominski A., Wortsman J., Luger T., Paus R., Solomon S. Corticotropin Releasing Hormone and Proopiomelanocortin Involvement in the Cutaneous Response to Stress. Physiol. Rev. 80(3):979-1020. 2000.

Hegadoren K. M., O'Donnell T., Lanius R., Coupland N. J., Lacaze-Masmonteil N. The role of beta-endorphin in the pathophysiology of major depression. Neuropeptides. 43(5):341-353. 2009.

Mercer A. J., Hentges S. T., Meshul C. K., Low M. J. Unraveling the central proopiomelanocortin neural circuits. Front. Neuroscie. 7:19-19. 2013.

Meister B., Gomuc B., Suarez E., Ishii Y., Durr K., Gillberg L. Hypothalamic proopiomelanocortin (POMC) neurons have a cholinergic phenotype. Eur. J. Neurosci. 24(10):2731-2740. 2006.

Herman J. P., McKlveen J. M., Ghosal S., Kopp B., Wulsin A., Makinson R., Scheimann J., Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Comprehen. Physiol. 6(2):603-621. 2016.

Nilsson I., Johansen J. E., Schalling M., Hokfelt T., Fetissov S. O. Maturation of the hypothalamic arcuate agouti-related protein system during postnatal development in the mouse. Brain Res. Dev. Brain Res. 155(2):147-154. 2005.

Wilson B. D., Bagnol D., Kaelin C. B., Ollmann M. M., Gantz I., Watson S. J., Barsh G. S. Physiological and anatomical circuitry between Agouti-related protein and leptin signaling. Endocrinology. 140(5):2387-2397. 1999.

Huo L., Grill H. J., Bjorbaek C. Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes. 55(3):567-573. 2006.

Perello M., Stuart R. C., Nillni E. A. Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. Am. J. Physiol. Endocrinol. Metabol. 292(5):E1348-E1357. 2007.

Shen Y., Tian M., Zheng Y., Gong F., Fu A. K. Y., Ip N. Y. Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model. Cell Reports. 17(7):1819-1831. 2016.

Yamano Y., Yoshioka M., Toda Y., Oshida Y., Chaki S., Hamamoto K., Morishima I. Regulation of CRF, POMC and MC4R Gene Expression after Electrical Foot Shock Stress in the Rat Amygdala and Hypothalamus. J. Veterin. Med.Sci. 66(11):1323-1327. 2004.

Leriche M., Cote-Velez A., Mendez M. Presence of pro-opiomelanocortin mRNA in the rat medial prefrontal cortex, nucleus accumbens and ventral tegmental area: studies by RT-PCR and in situ hybridization techniques. Neuropeptides. 41(6):421-431. 2007.

Mountjoy K. G. Pro-Opiomelanocortin (POMC) Neurones, POMC-Derived Peptides, Melanocortin Receptors and Obesity: How Understanding of this System has Changed Over the Last Decade. J. Neuroendocrinol. 27(6):406-418. 2015.

Brownstein M. Localizing peptides in the central nervous system: a progress report. Adv. Biochem. Psychopharmacol. 21:365-371. 1980.

Schwartz G. J. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition. 16(10):866-873. 2000.

Grill H. J. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity (Silver Spring). 14 Suppl 5:216S-221S. 2006.

Herman J. P., McKlveen J. M., Ghosal S., Kopp B., Wulsin A., Makinson R., Scheimann J., Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compar. Physiol. 6(2):603-621. 2016.

Rodriguez E. M., Blazquez J. L., Guerra M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides. 31(4):757-776. 2010.

Horvath T. L. The hardship of obesity: a soft-wired hypothalamus. Nat. Neurosci. 8(5):561-565. 2005.

Tsigos C., Chrousos G. P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53(4):865-871. 2002.

Ulrich-Lai Y. M., Herman J. P. Neural regulation of endocrine and autonomic stress responses. Nature Rev. Neuroscience. 10(6):397-409. 2009.

Herman J. P. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol. Neurobiol. 38(1):25-35. 2018.

Wang D., He X., Zhao Z., Feng Q., Lin R., Sun Y., Ding T., Xu F., Luo M., Zhan C. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front. Neuroanat. 9:40-40. 2015.

Zheng H., Patterson L. M., Rhodes C. J., Louis G. W., Skibicka K. P., Grill H. J., Myers M. G., Jr., Berthoud H.-R. A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. Am. J. Physiol. Regulat., Integrat. Compar. Physiol. 298(3):R720-R728. 2010.

Baker R. A., Herkenham M. Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. J. Compar. Neurol. 358(4):518-530. 1995.

Sawchenko P. E., Swanson L. W. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J. Compar. Neurol. 218(2):121-144. 1983.

Liposits Z., Sievers L., Paull W. K. Neuropeptide-Y and ACTH-immunoreactive innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamus of the rat. An immunocytochemical analysis at the light and electron microscopic levels. Histochemistry. 88(3-6):227-234. 1988.

Mihaly E., Fekete C., Lechan R. M., Liposits Z. Corticotropin-releasing hormone-synthesizing neurons of the human hypothalamus receive neuropeptide Y-immunoreactive innervation from neurons residing primarily outside the infundibular nucleus. J. Compar. Neurol. 446(3):235-243. 2002.

Liao N., Bulant M., Nicolas P., Vaudry H., Pelletier G. Anatomical interactions of proopiomelanocortin (POMC)-related peptides, neuropeptide Y (NPY) and dopamine beta-hydroxylase (D beta H) fibers and thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of rat hypothalamus. Neuropeptides. 18(2):63-67. 1991.

Sarkar S., Legradi G., Lechan R. M. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Res. 945(1):50-59. 2002.

Dhillo W. S., Small C. J., Seal L. J., Kim M. S., Stanley S. A., Murphy K. G., Ghatei M. A., Bloom S. R. The hypothalamic melanocortin system stimulates the hypothalamo-pituitary-adrenal axis in vitro and in vivo in male rats. Neuroendocrinology. 75(4):209-216. 2002.

Ludwig D. S., Mountjoy K. G., Tatro J. B., Gillette J. A., Frederich R. C., Flier J. S., Maratos-Flier E. Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am. J. Physiol. Endocrinol. Metabol. 274(4):E627-E633. 1998.

Бажан Н. М., Куликова Е. В., Макарова Е. Н., Яковлева Т. В., Казанцева А. Ю. Исследование роли меланокортиновых рецепторов мозга в подавлении потребления пищи при эфирном стрессе у мышей. Рос. физиол. журн. им И. М. Сеченова. 101(12):1337-1346. 2015. [Bazhan N. M., Kulikova E. V., Makarova E. N., Yakovleva T. V., Kazantseva A. Yu. Studying the role of brain melanocortin receptors in the suppressing of food intake under ether stress in mice. Russ. J. Physiol. 101(12):1337-1346. (In Russ)].

Newman C. B., Wardlaw S. L., Frantz A. G. Suppression of basal and stress-induced prolactin release and stimulation of luteinizing hormone secretion by alpha-melanocyte-stimulating hormone. Life Sci. 36(17):1661-1668. 1985.

de Kloet E. R., Joels M., Holsboer F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6(6):463-475. 2005.

Zunszain P. A., Anacker C., Cattaneo A., Carvalho L. A., Pariante C. M. Glucocorticoids, cytokines and brain abnormalities in depression. Progr. Neuro-psychopharmacol. & Biol. Psychiatry. 35(3):722-729. 2011.

Tozawa F., Suda T., Dobashi I., Ohmori N., Kasagi Y., Demura H. Central administration of alpha-melanocyte-stimulating hormone inhibits corticotropin-releasing factor release in adrenalectomized rats. Neurosci. Lett. 174(1):117-119. 1994.

Dutia R., Kim A. J., Mosharov E., Savontaus E., Chua S. C., Jrardlaw S. L. Regulation of prolactin in mice with altered hypothalamic melanocortin activity. Peptides. 37(1):6-12. 2012.

Savontaus E., Breen T. L., Kim A., Yang L. M., Chua S. C., Jr., Wardlaw S. L. Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinology. 145(8):3881-3891. 2004.

Bell M. E., Bhatnagar S., Akana S. F., Choi S., Dallman M. F. Disruption of Arcuate/Paraventricular Nucleus Connections Changes Body Energy Balance and Response to Acute Stress. J. Neuroscie. 20(17):6707-6713. 2000.

Smart J. L., Tolle V., Otero-Corchon V., Low M. J. Central Dysregulation of the Hypothalamic-Pituitary-Adrenal Axis in Neuron-Specific Proopiomelanocortin-Deficient Mice. Endocrinology. 148(2):647-659. 2007.

Xiao E., Xia-Zhang L., Vulliemoz N. R., Ferin M., Wardlaw S. L. Agouti-related protein stimulates the hypothalamic-pituitary-adrenal (HPA) axis and enhances the HPA response to interleukin-1 in the primate. Endocrinology. 144(5):1736-1741. 2003.

Holst B., Schwartz T. W. Molecular mechanism of agonism and inverse agonism in the melanocortin receptors: Zn(2+) as a structural and functional probe. Ann. N. Y. Acad. Sci. 994:1-11. 2003.

Ryan K. K., Mul J. D., Clemmensen C., Egan A. E., Begg D. P., Halcomb K., Seeley R. J., Herman J. P., Ulrich-Lai Y. M. Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology. 42:98-105. 2014.

Lu X.-Y., Barsh G. S., Akil H., Watson S. J. Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J. Neurosci. 23(21):7863-7872. 2003.

Siljee J. E., Unmehopa U. A., Kalsbeek A., Swaab D. F., Fliers E., Alkemade A. Melanocortin 4 receptor distribution in the human hypothalamus. Eur. J. Endocrinol. 168(3):361-369. 2013.

Von Frijtag J. C., Croiset G., Gispen W. H., Adan R. A., Wiegant V. M. The role of central melanocortin receptors in the activation of the hypothalamus-pituitary-adrenal-axis and the induction of excessive grooming. Br. J. Pharmacol. 123(8):1503-1508. 1998.

Mountjoy K. G., Mortrud M. T., Low M. J., Simerly R. B., Cone R. D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8(10):1298-1308. 1994.

Familari M., Smith A. I., Smith R., Funder J. W. Arginine vasopressin is a much more potent stimulus to ACTH release from ovine anterior pituitary cells than ovine corticotropin-releasing factor. 1. In vitro studies. Neuroendocrinology. 50(2):152-157. 1989.

Harris M., Aschkenasi C., Elias C. F., Chandrankunnel A., Nillni E. A., Bjøorbaek C., Elmquist J. K., Flier J. S., Hollenberg A. N. Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling. J. Clin. Invest. 107(1):111-120. 2001.

Fekete C., Légrádi G., Mihály E., Huang Q. H., Tatro J. B., Rand W. M., Emerson C. H., Lechan R. M. alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J. Neurosci. 20(4):1550-1558. 2000.

King C. M., Hentges S. T. Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites. PloS one. 6(10):e25864-e25864. 2011.

Eskay R. L., Giraud P., Oliver C., Brown-Stein M. J. Distribution of alpha-melanocyte-stimulating hormone in the rat brain: evidence that alpha-MSH-containing cells in the arcuate region send projections to extrahypothalamic areas. Brain Res. 178(1):55-67. 1979.

Singru P. S., Fekete C., Lechan R. M. Neuroanatomical evidence for participation of the hypothalamic dorsomedial nucleus (DMN) in regulation of the hypothalamic paraventricular nucleus (PVN) by alpha-melanocyte stimulating hormone. Brain Res. 1064(1-2):42-51. 2005.

Bagnol D., Lu X. Y., Kaelin C. B., Day H. E., Ollmann M., Gantz I., Akil H., Barsh G. S., Watson S. J. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci. 19(18):RC26-RC26. 1999.

O'Donohue T. L., Miller R. L., Jacobowitz D. M. Identification, characterization and stereotaxic mapping of intraneuronal alpha-melanocyte stimulating hormone-like immunoreactive peptides in discrete regions of the rat brain. Brain Res. 176(1):101-123. 1979.

Coppola A., Liu Z.-W., Andrews Z. B., Paradis E., Roy M.-C., Friedman J. M., Ricquier D., Richard D., Horvath T. L., Gao X.-B., Diano S. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell metabolism. 5(1):21-33. 2007.

Liu J., Garza J. C., Truong H. V., Henschel J., Zhang W., Lu X.-Y. The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology. 148(11):5531-5540. 2007.

Dayas C. V., Buller K. M., Day T. A. Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Eur. J. Neurosci. 11(7):2312-2322. 1999.

Kishi T., Aschkenasi C. J., Lee C. E., Mountjoy K. G., Saper C. B., Elmquist J. K. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J. Compar. Neurol. 457(3):213-235. 2003.

Liu J., Garza J. C., Li W., Lu X. Y. Melanocortin-4 receptor in the medial amygdala regulates emotional stress-induced anxiety-like behaviour, anorexia and corticosterone secretion. Int. J .Neuropsychopharmacol. 16(1):105-120. 2013.

Lebow M. A., Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry. 21(4):450-463. 2016.

Herman J. P., Ostrander M. M., Mueller N. K., Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog.Neuropsychopharmacol. Biol. Psychiatry. 29(8):1201-1213. 2005.

Feldman S., Conforti N., Weidenfeld J. Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neurosci. Biobehav. Rev. 19(2):235-240. 1995.

Walker K. A., Ficek B. N., Westbrook R. Understanding the Role of Systemic Inflammation in Alzheimer's Disease. ACS Chem. Neurosci. 10(8):3340-3342. 2019.

Turnbull A. V., Rivier C. L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79(1):1-71. 1999.

Cragnolini A. B., Perello M., Schioth H. B., Scimonelli T. N. alpha-MSH and gamma-MSH inhibit IL-1beta induced activation of the hypothalamic-pituitary-adrenal axis through central melanocortin receptors. Regul. Pept. 122(3):185-190. 2004.

Papadopoulos A. D., Wardlaw S. L. Endogenous alpha-MSH modulates the hypothalamic-pituitary-adrenal response to the cytokine interleukin-1beta. J. Neuroendocrinol. 11(4):315-319. 1999.

Van Houten M., Khan M. N., Walsh R. J., Baquiran G. B., Renaud L. P., Bourque C., Sgro S., Gauthier S., Chretien M., Posner B. I. NH2-terminal specificity and axonal localization of adrenocorticotropin binding sites in rat median eminence. Proc. Nat. Acad. Sci. USA. 82(4):1271-1275. 1985.

Sawchenko P. E., Arias C. Evidence for short-loop feedback effects of ACTH on CRF and vasopressin expression in parvocellular neurosecretory neurons. J. Neuroendocrinol. 7(9):721-731. 1995.

Markov D. D., Yatsenko K. A., Inozemtseva L. S., Grivennikov I. A., Myasoedov N. F., Dolotov O. V. Systemic N-terminal fragments of adrenocorticotropin reduce inflammation- and stress-induced anhedonia in rats. Psychoneuroendocrinology. 82:173-186. 2017.