МОЛЕКУЛЯРНЫЕ ОСНОВЫ ВЛИЯНИЯ МЕТФОРМИНА НА РЕПРОДУКТИВНУЮ СИСТЕМУ
PDF

Ключевые слова

метформин
АМФ-активируемая протеинкиназа
митохондриальный комплекс I
репродуктивная система
сахарный диабет
стероидогенез
синдром поликистозных яичников

Как цитировать

Шпаков, А. О. (2020). МОЛЕКУЛЯРНЫЕ ОСНОВЫ ВЛИЯНИЯ МЕТФОРМИНА НА РЕПРОДУКТИВНУЮ СИСТЕМУ. Российский физиологический журнал им. И. М. Сеченова, 106(7), 811–822. https://doi.org/10.31857/S086981392005009X

Аннотация

В основе действия метформина (МФ), который широко применяется для лечения сахарного диабета 2 типа и метаболического синдрома, лежит нормализация инсулиновой чувствительности, липидного и углеводного обмена. В последние годы появились данные экспериментальных и клинических исследований о том, что МФ нормализует нарушенные в условиях метаболических расстройств функции основных звеньев гипоталамо-гипофизарно-гонадной оси, усиливая продукцию гонадолиберина, гипоталамического регулятора этой оси, а также восстанавливая стероидогенную активность гонад и нормализуя процессы сперматогенеза, фолликулогенеза и оогенеза. Применение МФ при синдроме поликистозных яичников и при других репродуктивных дисфункциях, ассоциированных с метаболическими нарушениями, предотвращает снижение фертильности и повышает результативность вспомогательных репродуктивных технологий. Современным достижениям в области изучения механизмов действия МФ и его использования для восстановления функций женской и мужской репродуктивных систем при метаболических заболеваниях и других патологиях посвящен настоящий обзор.

https://doi.org/10.31857/S086981392005009X
PDF

Литература

Sliwinska A., Drzewoski J. Molecular action of metformin in hepatocytes: an updated insight. Curr. Diabetes Rev. 11(3): 175–181. 2015. doi: 10.2174/1573399811666150325233108

An H., He L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J. Endocrinol. 228(3): R97–R106. 2016. doi: 10.1530/JOE-15-0447

Gong L., Goswami S., Giacomini K.M., Altman R.B., Klein T.E. Metformin pathways: pharmacokinetics and pharmacodynamics. Chemosphere. 104: 8897–8901. 2012. doi: 10.1097/FPC.0b013e3283559b22

Shu Y., Brown C., Castro R.A., Shi R.J., Lin E.T., Owen R.P., Sheardown S.A., Yue L., Burchard E.G., Brett C.M., Giacomini K.M. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 83(2): 273–280. 2008. doi: 10.1038/sj.clpt.6100275

Chang H.H., Hsueh Y.S., Cheng Y.W., Ou H.T., Wu M.H. Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome. Int. J. Mol. Sci. 20(7): pii: E1720. 2019. doi: 10.3390/ijms20071720

Graham G.G., Punt J., Arora M., Day R.O., Doogue M.P., Duong J.K., Furlong T.J., Greenfield J.R., Greenup L.C., Kirkpatrick C.M., Ray J.E., Timmins P., Williams K.M. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 50(2): 81–98. 2011. doi: 10.2165/11534750-000000000-00000

Foretz M., Hébrard S., Leclerc J., Zarrinpashneh E., Soty M., Mithieux G., Sakamoto K., Andreelli F., Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120(7): 2355–2369. 2010. doi: 10.1172/JCI40671DS1

Shpakov A.O., Derkach K.V. Molecular Mechanisms of the Effects of Metformin on the Functional Activity of Brain Neurons. Neurosci. Behav. Physiol. 48(8): 969–977. 2018. doi: 10.1007/s11055-018-0657-6

Rena G., Hardie D.G., Pearson E.R. The mechanisms of action of metformin. Diabetologia. 60(9): 1577-1585. 2017. doi: 10.1007/s00125-017-4342-z

Hardie D.G., Ross F.A., Hawley S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell. Biol. 13(4): 251–262. 2012. doi: 10.1038/nrm3311

Meng S., Cao J., He Q., Xiong L., Chang E., Radovick S., Wondisford F.E., He L. Metformin activates AMP-activated protein kinase by promoting formation of the alphabetagamma heterotrimeric complex. J. Biol. Chem. 290(6): 3793–3802. 2015. doi: 10.1074/jbc.M114.604421

He L., Sabet A., Djedjos S., Miller R., Sun X.J., Hussain M.A., Radovick S., Wondisford F.E. Metformin and Insulin Suppress Hepatic Gluconeogenesis through Phosphorylation of CREB Binding Protein. Cell. 137(4): 635–646. 2009. doi: 10.1016/j.cell.2009.03.016

He L., Wondisford F.E. Metformin Action: Concentrations Matter. Cell Metab. 21(2): 159–162. 2015. doi: 10.1016/j.cmet.2015.01.003

Cao J., Meng S.M., Chang E., Beckwith-Fickas K., Xiong L.S., Cole R.N., Radovick S., Wondisford F.E., He L. Low Concentrations of Metformin Suppress Glucose Production in Hepatocytes through AMP-activated Protein Kinase (AMPK). J. Biol. Chem. 289(30): 20435–20446. 2014. doi: 10.1074/jbc.M114.567271

Cameron A.R., Logie L., Patel K., Erhardt S., Bacon S., Middleton P., Harthill J., Forteath C., Coats J.T., Kerr C., Curry H., Stewart D., Sakamoto K., Repiščák P., Paterson M.J., Hassinen I., McDougall G., Rena G. Metformin selectively targets redox control of complex I energy transduction. Redox Biol. 14: 187–197. 2018. doi: 10.1016/j.redox.2017.08.018

Miller R.A., Chu Q.W., Xie J.X., Foretz M., Viollet B., Birnbaum M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 494(7436): 256–260. 2013. doi: 10.1038/nature11808

Madiraju A.K., Erion D.M., Rahimi Y., Zhang X.-M., Braddock D.T., Albright R.A., Prigaro B.J., Wood J.L., Bhanot S., MacDonald M.J., Jurczak M.J., Camporez J.P., Lee H.Y., Cline G.W., Samuel V.T., Kibbey R.G., Shulman G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 510(7506): 542–546. 2014. doi: 10.1038/nature13270

Madiraju A.K., Qiu Y., Perry R.J., Rahimi Y., Zhang X.-M., Zhang D., Camporez J.G., Cline G.W., Butrico G.M., Kemp B.E., Casals G., Steinberg G.R., Vatner D.F., Petersen K.F., Shulman G.I. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat. Med. 24(9): 1384–1394. 2018. doi: 10.1038/s41591-018-0125-4

Cuyàs E., Verdura S., Llorach-Pares L., Fernández-Arroyo S., Luciano-Mateo F., Cabré N., Stursa J., Werner L., Martin-Castillo B., Viollet B., Neuzil J., Joven J., Nonell-Canals A., Sanchez-Martinez M., Menendez J.A. Metformin directly targets the H3K27me3 demethylase KDM6A/UTX. Aging Cell. 17(4): e12772. 2018. doi: 10.1111/acel.12772

Bauer P.V., Duca F.A., Waise T.M.Z., Rasmussen B.A., Abraham M.A., Dranse H.J., Puri A., O'Brien C.A., Lam T.K.T. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab. 27(1): 101–117. 2017. doi: 10.1016/j.cmet.2017.09.019

Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L., Ståhlman M., Olsson L.M., Serino M., Planas-Fèlix M., Xifra G., Mercader J.M., Torrents D., Burcelin R., Ricart W., Perkins R., Fernàndez-Real J.M., Bäckhed F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23(7): 850–858. 2017. doi: 10.1038/nm.4345

Shin N.R., Lee J.C., Lee H.Y., Kim M.S., Whon T.W., Lee M.S., Bae J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 63(5): 727–735. 2014. doi: 10.1136/gutjnl-2012-303839

Duca F.A., Cote C.D., Rasmussen B.A., Zadeh-Tahmasebi M., Rutter G.A., Filippi B.M., Lam T.K. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21(5): 506–511. 2015. doi: 10.1038/nm.3787

Huang N.L., Chiang S.H., Hsueh C.H., Liang Y.J., Chen Y.J., Lai L.P. Metformin inhibits TNF-alpha-induced I kappa B kinase phosphorylation, I kappa B-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int. J. Cardiol. 134(2): 169–175. 2009. doi: 10.1016/j.ijcard.2008.04.010

Cimino I., Casoni F., Liu X., Messina A., Parkash J., Jamin S.P., Catteau-Jonard S., Collier F., Baroncini M., Dewailly D., Pigny P., Prescott M., Campbell R., Herbison A.E., Prevot V., Giacobini P. Novel role for anti-mullerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat. Commun. 7: 1–12. 2016. doi: 10.1038/ncomms10055

Sivalingam V.N., Myers J., Nicholas S., Balen A.H., Crosbie E.J. Metformin in reproductive health, pregnancy and gynaecological cancer: established and emerging indications. Hum. Reprod. Update. 20(6): 853–868. 2014. doi: 10.1093/humupd/dmu037

Martis R., Crowther C.A., Shepherd E., Alsweiler J., Downie M.R., Brown J. Treatments for women with gestational diabetes mellitus: an overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 8: CD012327. 2018. doi: 10.1002/14651858.CD012327.pub2

Tang T., Lord J., Norman R., Yasmin E., Balen A. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) forwomenwith polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst. Rev. 5–7: CD003053. 2012. doi: 10.1002/14651858.CD003053.pub5

Yu Y., Fang L., Zhang R., He J., Xiong Y., Guo X., Du Q., Huang Y., Sun Y. Comparative effectiveness of 9 ovulation-induction therapies in patients with clomiphene citrate-resistant polycystic ovary syndrome: a network meta-analysis. Sci. Rep. 7(1): 1–12. 2017. doi: 10.1038/s41598-017-03803-9

Palomba S., Falbo A., La Sala G.B. Metformin and gonadotropins for ovulation induction in patients with polycystic ovary syndrome: a systematic review with meta-analysis of randomized controlled trials. Reprod. Biol. Endocrinol. 12:3. 2014. doi: 10.1186/1477-7827-12-3

Faure M., Bertoldo M.J., Khoueiry R., Bongrani A., Brion F., Giulivi C., Dupont J., Froment P. Metformin in Reproductive Biology. Front Endocrinol. (Lausanne). 9: 675. 2018. doi: 10.3389/fendo.2018.00675

Kalem M.N., Kalem Z., Gurgan T. Effect of metformin and oral contraceptives on polycystic ovary syndrome and IVF cycles. J. Endocrinol. Invest. 40(7): 745–752. 2017. doi: 10.1007/s40618-017-0634-x

Barbieri R.L., Makris A., Randall R.W., Daniels G., Kistner R.W., Ryan K.J. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J. Clin. Endocrinol. Metab. 62(5): 904–910. 1986. doi: 10.1210/jcem-62-5-904

Stepto N.K., Cassar S., Joham A.E., Hutchison S.K., Harrison C.L., Goldstein R.F., Teede H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 28(3): 777–784. 2013. doi: 10.1093/humrep/des463

Adashi E.Y., Resnick C.E., D'Ercole A.J., Svoboda M.E., Van Wyk J.J. Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. Endocr. Rev. 6: 400–420. 1985. doi: 10.1210/edrv-6-3-400

Nestler J.E., Powers L.P., Matt D.W. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 72(1): 83–89. 1991. doi: 10.1210/jcem-72-1-83

Huang Y., Yu Y., Gao J., Li R., Zhang C. Impaired oocyte quality induced by dehydroepiandrosterone is partially rescued by metformin treatment. PLoS ONE. 10:e 0122370. 2015. doi: 10.1371/journal.pone.0122370

Attia G.R., Rainey W.E., Carr B.R. Metformin directly inhibits androgen production in human thecal cells. Fertil. Steril. 76(3): 517–524. 2001. doi: 10.1016/S0015-0282(01)01975-6

Bertoldo M.J., Guibert E., Faure M., Ramé C., Foretz M., Viollet B., Dupont J., Froment P. Specific deletion of AMP-activated protein kinase (α1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology. PLoS ONE. 10(3):e0119680. 2015. doi: 10.1371/journal.pone.0119680

Rice S., Elia A., Jawad Z., Pellatt L., Mason H.D. Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: relevance to polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98(9): E1491–E500. 2013. doi: 10.1210/jc.2013-1865

Fuhrmeister I., Branchini G., Pimentel A., Ferreira G., Capp E., Brum I., von Eye Corleta H. Human granulosa cells: insulin and insulin-like growth factor-1 receptors and aromatase expression modulation by metformin. Gynecol. Obs. Invest. 77: 156–162. 2014. doi: 10.1159/000358829

Catteau-Jonard S., Jamin S.P., Leclerc A., Gonzalès J., Dewailly D., di Clemente N. Anti-Mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93(11): 4456–4461. 2008. doi: 10.1210/jc.2008-1231

Willis D.S., Watson H., Mason H.D., Galea R., Brincat M., Franks S. Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J. Clin. Endocrinol. Metab. 83(11): 3984–3991. 1998. doi: 10.1210/jcem.83.11.5232

Morin-Papunen L., Rantala A.S., Unkila-Kallio L., Tiitinen A., Hippeläinen M., Perheentupa A., Tinkanen H., Bloigu R., Puukka K., Ruokonen A., Tapanainen J.S. Metformin improves pregnancy and live-birth rates in women with polycystic ovary syndrome (PCOS): a multicenter, double-blind, placebo-controlled randomized trial. J. Clin. Endocrinol. Metab. 97(5): 1492–1500. 2012. doi: 10.1210/jc.2011-3061

Dupont C., Faure C., Sermondade N., Boubaya M., Eustache F., Clément P., Briot P., Berthaut I., Levy V., Cedrin-Durnerin I., Benzacken B., Chavatte-Palmer P., Levy R. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J. Androl. 15(5): 622–625. 2013. doi: 10.1038/aja.2013.65

Morgante G., Tosti C., Orvieto R., Musacchio M.C., Piomboni P., De Leo V. Metformin improves semen characteristics of oligo-terato-asthenozoospermic men with metabolic syndrome. Fertil Steril. 95: 2150–2152. 2011. doi: 10.1016/j.fertnstert.2010.12.009

Derkach K., Zakharova I., Zorina I., Bakhtyukov A., Romanova I., Bayunova L., Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS ONE. 14(3): e0213779. 2019. doi: 10.1371/journal.pone.0213779

Mathew H., Castracane V.D., Mantzoros C. Adipose tissue and reproductive health. Metabolism. 86: 18–32. 2018. doi: 10.1016/j.metabol.2017.11.006

Shpakov A.O., Ryzhov J.R., Bakhtyukov A.A., Derkach K.V. The regulation of the male hypothalamic-pituitary-gonadal axis and testosterone production by adipokines. In: Advances in Testosterone Action (Ed by M. Estrada). Intech Open Access Publisher, Rijeka, Croatia. 25–57. 2018. http://dx.doi.org/10.5772/intechopen.76321

Бахтюков А.А., Шпаков А.О. Молекулярные механизмы действия лептина на гипоталамо-гипофизарно-гонадную ось. Цитология. 60(10):755–767. 2018. doi: 10.7868/S0041377118100016. [Bakhtyukov A.A., Shpakov A.O. Molecular mechanisms of leptin action on the hypothalamic-pituitary-gonadal axis. Tsitologiia. 60(10): 755–767. 2018.(In Russ)]. doi: 10.7868/S0041377118100016

Attia S.M., Helal G.K., Alhaider A.A. Assessment of genomic instability in normal and diabetic rats treated with metformin. Chem. Biol. Interact. 180: 296-304. 2009. doi: 10.1016/j.cbi.2009.03.001

Rabbani S.I., Devi K., Khanam S. Role of pioglitazone with metformin or glimepiride on oxidative stress-induced nuclear damage and reproductive toxicity in diabetic rats. Malays J. Med. Sci. 17: 3–11. 2010.

Yan W.J., Mu Y., Yu N., Yi T.L., Zhang Y., Pang X.L., Cheng D., Yang J. Protective effects of metformin on reproductive function in obese male rats induced by high-fat diet. J. Assist. Reprod. Genet. 32(7): 1097–1104. 2015. doi: 10.1007/s10815-015-0506-2

Ghasemnejad-Berenji M., Ghazi-Khansari M., Yazdani I., Nobakht M., Abdollahi A., Ghasemnejad-Berenji H., Mohajer Ansari J., Pashapour S., Dehpour A.R. Effect of metformin on germ cell-specific apoptosis, oxidative stress and epididymal sperm quality after testicular torsion/detorsion in rats. Andrologia. 50(2). 2018. doi: 10.1111/and.12846

Nna V.U., Bakar A.B.A., Ahmad A., Mohamed M. Diabetes-induced testicular oxidative stress, inflammation, and caspase-dependent apoptosis: the protective role of metformin. Arch. Physiol. Biochem. 4: 1–12. 2018. doi: 10.1080/13813455.2018.1543329

Nna V.U., Bakar A.B.A., Ahmad A., Mohamed M. Down-regulation of steroidogenesis-related genes and its accompanying fertility decline in streptozotocin-induced diabetic male rats: ameliorative effect of metformin. Andrology. 7(1): 110–123. 2019. doi: 10.1111/andr.12567

Hurtado de Llera A., Martin-Hidalgo D., Gil M.C., Garcia-Marin L.J., Bragado M.J. AMP-activated kinase AMPK is expressed in boar spermatozoa and regulates motility. PLoS ONE. 7: e38840. 2012. doi: 10.1371/journal.pone.0038840

Tartarin P., Moison D., Guibert E., Dupont J., Habert R., Rouiller-Fabre V., Frydman N., Pozzi S., Frydman R., Lecureuil C., Froment P. Metformin exposure affects human and mouse fetal testicular cells. Hum. Reprod. 27: 3304–3314. 2012. doi: 10.1093/humrep/des264

Riera M.F., Regueira M., Galardo M.N., Pellizzari E.H., Meroni S.B., Cigorraga S.B. Signal transduction pathways in FSH regulation of rat Sertoli cell proliferation. Am. J. Physiol. Endocrinol. Metab. 302(8): E914-E923. 2012. doi: 10.1152/ajpendo.00477.2011

Bridgeman S.C., Ellison G.C., Melton P.E., Newsholme P., Mamotte C.D.S. Epigenetic effects of metformin: from molecular mechanisms to clinical implications. Diabetes Obes Metab. 20(7): 1553–1562. 2018. doi: 10.1111/dom.13262