ГАНГЛИОЗНЫЕ КЛЕТКИ С ФОНОВОЙ АКТИВНОСТЬЮ СЕТЧАТКИ РЫБ И ИХ ВОЗМОЖНАЯ ФУНКЦИЯ В ОЦЕНКЕ ЗРИТЕЛЬНОЙ СЦЕНЫ
PDF

Ключевые слова

зрение
Carassius gibelio
ганглиозные клетки
экстраклеточные реакции
рецептивное поле
контрастная чувствительность
тектум оптикум
цветное зрение

Как цитировать

Максимова, Е. М., Алипер, А. Т., Дамянович, И. З., Зайчикова, А. А., & Максимов, П. В. (2020). ГАНГЛИОЗНЫЕ КЛЕТКИ С ФОНОВОЙ АКТИВНОСТЬЮ СЕТЧАТКИ РЫБ И ИХ ВОЗМОЖНАЯ ФУНКЦИЯ В ОЦЕНКЕ ЗРИТЕЛЬНОЙ СЦЕНЫ. Российский физиологический журнал им. И. М. Сеченова, 106(4), 486–503. https://doi.org/10.31857/S0869813920040044

Аннотация

Регистрировали экстраклеточно импульсную фоновую активность одиночных ганглиозных клеток от окончаний их аксонов в тектум оптикум живой обездвиженной рыбы. Размеры рецептивных полей ON- и OFF- элементов с фоновой активностью (ЭФА) составляли 4-5° и были сопоставимы с таковыми детекторов признаков. Для возникновения импульсного разряда ЭФА необходимо наличие контраста между центром и периферией рецептивного поля. В отсутствие контраста импульсная активность не возникает. Величина реакции монотонно зависела от степени этого контраста. ЭФА как ON-, так и OFF-типа связаны с тремя типами колбочек (L, M, S). Как в центре, так и на периферии рецептивного поля обнаружена цветовая оппонентность, причём центр и периферия рецептивного поля оппонентны по этому признаку. Иными словами, ЭФА являются дважды оппонентными и, следовательно, могут принимать участие в цветоразличении. Совместная работа детекторов признаков и гапглиозных клеток с фоновой активностью, разделенной по ON- и OFF- каналам, представленная ретинотопически, может обеспечить нейроны тектум оптикум необходимой информацией о зрительной сцене для осуществления его функции – контроля внешнего внимания.

https://doi.org/10.31857/S0869813920040044
PDF

Литература

Cronin T.W., Douglas R.H. Seeing and doing: how vision shapes animal behaviour. Phil. Trans. R. Soc. B 369. 2014.

Bianco I.H., Kampff, A.R., Engert, F. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5: 10. 2011.

Dunn T.W., Gebhardt C., Naumann E.A., Riegler C., Ahrens M.B., Engert F., Del Bene F. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron. 89: 613-628. 2016.

Northmore D.P.M. The optic tectum. Encyclopedia of fish physiology: From genome to environment. A.P. Farrell (Ed.) 131–142. London. UK: Elsevier. 2011.

Springer A.D., Easter S.S., Agranoff B.W. The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res. 128: 393–404. 1977.

BarkerA.J., Baier H. Sensorimotor decision making in the zebrafish tectum. Curr. Biol. 25: 2804-2814. 2015.

Mangrum W.I., Dowling J.E., Cohen E.D. A morphological classification of ganglion cells in the zebrafish retina. Visual Neurosci. 19: 767–779. 2002.

Robles E., Filosa A, Baier H. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J. Neurosci. 33: 5027–5039. 2013.

Cook J.E., Becker D.L., Kapila R. Independent mosaics of large inner-and outer-stratified ganglion cells in the goldfish retina. J. Comp. Neurol. 318: 355–366. 1992.

Cook J.E., Podugolnikova T.A., Kondrashev S.L. Species-dependent variation in the dendritic stratification of apparently homologous retinal ganglion cell mosaics in two neoteleost fishes. Vision Res. 39: 2615-2631. 1999.

Field G.D., Chichilnisky E. J. Information processing in the primate retina: Circuitry and coding. Annu. Rev. Neurosci. 30: 1–30. 2007.

Masland R.H. The neuronal organization of the retina. Neuron 76: 266–280. 2012.

Johnston J., Lagnado L. What the Fish’s Eye Tells the Fish’s Brain. Neuron 76: 257-259. 2012.

Robles E., Laurell E., Baier H. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr. Biol. 24:2085–2096. 2014.

Jacobson M., Gaze R.M. Types of visual response from single units in the optic tectum and optic nerve of the goldfish. Q. J. Exp. Physiol. 49: 199–209. 1964.

Nikolaou N., Lowe A.S., Walker A.S., Abbas F., Hunter P.R., Thompson I.D., Meyer M.P. Parametric functional maps of visual inputs to the tectum. Neuron. 76: 317–324. 2012.

Kassing V., Engelman G., Kurtz R. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextrancoupled calcium dyes delivered via local electroporation. PLoS One 8: e62846. 2013.

Preuss S.J., Triverdi C.A., Berg-Maurer C.M., Ryu S., Bollman J.H. Classification of objectsize in retinotectal microcircuits. Curr. Biol. 24: 2376–2385. 2014.

Zenkin G.M., Pigarev I.N. Detector properties of the ganglion cells of the pike retina. Biofizika. 14: 763–772. 1969.

Максимова Е.М., Орлов О.Ю., Диментман А.М. Исследование зрительной системы нескольких видов морских рыб. Вопр. ихтиол. 11: 893-899. 1971. [Maximova E.M., Orlov O.Yu., Dimentman A.M. Investigation of visual system of some marine fishes. Voprocy Ichtiologii 11: 893–899. 1971. (In Russ)].

Aliper A.T., Zaichikova A.A., Damjanović I., Maximov P.V., Kasparson A.A., Gačić Z., Maximova E.M. Updated functional segregation of retinal ganglion cell projections in the tectum of a cyprinid fish - Further elaboration based on microelectrode recordings. Fish Physiol. Biochem. 45: 773–792. 2019.

Maximova E.M., Aliper A.T., Damjanović I., Zaichikova A.A., Maximov P.V. On the organization of receptive fields of retinal spot detectors projecting to the fish tectum: Analogies with the local edge detectors in frogs and mammals. J. Comp. Neurol. 1–13. 2019. https://doi.org/10.1002/cne.24824

Mysore S.P., Knudsen E.I. The role of a midbrain network in competitive stimulus selection. Curr. Opin. Neurobiol. 21: 653–660. 2011.

Krauzli, R.J., Lovejoy L.P., Zéno, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36: 165–182. 2013.

Sridharan D., Schwarz J.S., Knudsen E.I. Selective attention in birds. Curr. Biol. 24: R510–R513. 2014.

Ben-Tov M., Donchin O., Ben-Shahar O., Segev R. Pop-out in visual search of moving targets in the archer fish. Nat. Commun. 6: 1–11. 2015.

Kardamakis A.A., Saitoh K., Grillner S. Tectal microcircuit generating visual selection commands on gaze-controlling neurons. Proc. Natl. Acad. Sci. USA.

: E1956–E1965. 2015.

Zhaoping L. From the optic tectum to the primary visual cortex: Migration through evolution of the saliency map for exogenous attentional guidance. Curr. Opin. Neurobiol. 40: 94–102. 2016.

Bianco I.H., Engert F. Visuomotor transformations underlying hunting behavior in zebrafish. Curr. Biol. 25: 831–846. 2015.

Neave D.A. The development of visual acuity in larval plaice (Pleuronectes platessa L.) and turbot (Scophthalmus maximus L.). J. Exp. Mar. Biol. Ecol. 78: 167–175. 1984.

Schaerer S., Neumeyer C. Motion detection in goldfish investigated with the optomotor response is color blind". Vision Res. 36: 4025–4034. 1996.

Dobberfuhl A.P., Ullmann J.F.P., Shumway C.A. Visual acuity, environmental complexity, and social organization in African cichlid fishes. Behav. Neurosci. 119: 1648–1655. 2005.

Haug M.F., Biehlmaier O., Mueller K.P., Neuhauss S.C.F. Visual acuity in larval zebrafish: Behavior and histology. Front. Zool. 7: 8. 2010.

Maximov V.V., Maximova E.M., Maximov P.V. Direction selectivity in the goldfish tectum revisited. Ann. N. Y. Acad. Sci. 1048: 198–205. 2005.

Damjanović I., Maximova E.M., Maximov V.V. On the organization of receptive fields of orientation-selective units recorded in the fish tectum. J. Integr. Neurosci. 8: 323–344. 2009.

Maximov V.V., Maximova E.M., Damjanović I., Maximov P.V. Detection and resolution of drifting gratings by motion detectors in the fish retina. J. Integr. Neurosci. 12: 117–143. 2013.

Алипер А.Т. Размеры рецептивных полей спонтанно-активных ганглиозных клеток сетчатки серебряного карася. Сенсорные системы 32: 8-13. 2018. [Aliper A.T. Receptive field sizes of sustained ganglion cells in the goldfish retina. Sensornye Sistemy 32: 8–13. 2018. (In Russ)].

Максимов В.В., Максимова Е.М., Максимов П.В. Классификация дирекционально-избирательных элементов, регистрируемых в тектуме карася. Сенсорные системы 19: 322-335. 2005. [Maximov V.V., Maximova E.M., Maximov P.V. Classification of direction-selective units recorded in the goldfish tectum. Sensornye Sistemy 19: 322–335. 2005. (In Russ)].

Damjanović I., Maximova E.M., Maximov V.V. Receptive field sizes of direction-selective units in the fish tectum. J. Integr. Neurosci. 8: 77–93. 2009.

Maximov P.V., Maximov V.V. A hardware-software complex for electrophysiological studies of the fish visual system. Internat. Symposium “Ivan Djaja's (Jaen Giaja) Belgrade School of Physiology”. Belgrade. Serbia. Book of Abstracts. 151. 2010.

Gesteland R.C., Howland B., Lettvin J.Y., Pitts W.H. Comments on microelectrodes. Proc. IRE 47: 1856–1862. 1959.

Neumeyer C. Tetrachromatic color vision in goldfish. Evidence from color mixture experiments. J. Comp. Physiol. A 171: 639-649. 1992.

MacNichol E.F. Jr. A unifying presentation of photopigment spectra. Vision Res. 26: 1543-1556. 1986.

Govardovskii V.I., Fyhrquist N., Reuter T., Kuzmin D.G., Donner K. In search of the visual pigment template. Vision Neurosci. 17: 509-28. 2000.

Maximova E.M., Govardovskii V.I., Maximov P.V., Maximov V.V. Spectral sensitivity of direction-selective ganglion cells in the fish retina. Ann. N.Y. Acad. Sci. 1048: 433-434. 2005.

Svaetichin G., MacNichol E. F. Jr. Retinal mechanisms for chromatic and achromatic vision. Ann. N.Y. Acad. Sci. 74: 385-404. 1958.

MacNichol E.F. Jr., Wolbarsht M.L., Wagner H.G. Electrophysiological evidence for a mechanism of color vision in the goldfish. In: Light and Life. McElroy W.D., Glass B. (Eds). 795–814. Baltimore. Johns Hopkins Press. 1961.

MacNichol E.F. Jr. Three-pigment color vision. Sci. Amer. 211: 48–56. 1964.

Orlov O. Yu., Maximova E. M. S-potential sources as excitation pools. Vision Res. 5: 573-582. 1965.

Mitarai G. Chromatic properties of S-potentials in fish. In: The S-potential. Drujan B. D., Laufer M. (Eds).137-150. New York. Liss. 1982.

Stell W.K., Kretz R., Lightfoot D. O. Horizontal cell conectivity in goldfish. In: The S-potential. Drujan B. D., Laufer M. (Eds). 51-75. New York. Liss. 1982.

Li Y.N., Matsui J.I., Dowling J.E. Specificity of the horizontal cell-photoreceptor connections in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 516: 442–453. 2009.

Meier A., Nelson R., Connaughton V.P. Color Processing in Zebrafish Retina. Front. Cell. Neurosci. 12: 327. 2018.

Maximov V.V., Maximova E.M., Damjanović I., Maximov, P.V. Color properties of the motion detectors projecting to the goldfish tectum: I. A color matching study. J. Integr. Neurosci. 13: 465–484. 2014.

Maximov V.V., Maximova E.M., Damjanović I., Aliper A.T., Maximov P.V. Color properties of the motion detectors projecting to the goldfish tectum: II. Selective stimulation of different chromatic types of cones. J. Integr. Neurosci. 14: 31–52. 2015.

Maximova E.M., Maximov, P.V., Damjanović I., Aliper A.T., Kasparson A.A., Maximov V.V. Color properties of the motion detectors projecting to the goldfish tectum: III. Color-opponent interactions in the receptive field. J. Integr. Neurosci. 14: 441–454. 2015.

Maximov P.V., Aliper A.T., Maximova E.M. Colour-specific responses of the goldfish retinal ganglion cells revealed by cone-isolated visual stimulation. The 25th Symposium of the Internat. Colour Vision Society. Riga, Latvia. Book of Abstracts. 107. 2019.

Бызов А.Л. Горизонтальные клетки ретины как регуляторы синаптической трансмиссии. Физиол. журн. СССР им. И.М. Сеченова. 53: 1115-1123. 1967. [Byzov A.L. Horizontal cells of the retina as regulators of synaptic transmission. Sechenov. Fiziol. Zh. USSR. 53: 1115–1123. 1967. (In Russ)].

Maximova E.M. Effect of intracellular polarization of horizontal cells on the activity of the ganglion cells in the fish retina. Biofizika. 14: 537–544. 1969.

Kamermans M., Vandijk B.W., Spekreijse H. Color opponency in cone-driven horizontal cells in carp retina – aspecific pathways between cones and horizontal cells. J. Gen. Physiol. 97: 819–843. 1991.

Lettvin J.Y., Maturana H.R., McCulloch W.S., Pitts W.H. What frog’s eye tells to the frog’s brain. Proc. IRE 47: 1940–1951. 1959.

Margolis D.J., Detwiler P.B. Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. J. Neurosci. 27: 5994–6005. 2007.

Krieger B., Qiao M., Rousso D.L., Sanes J.R., Meister M. Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures. PLoS ONE 12: e0180091. 2017.

Maximov V., Orlov O., Reuter T. Chromatic properties of the retinal afferents in the thalamus and the tectum of the frog (Rana temporaria). Vision Res. 25: 1037-1049. 1985.

Daw N.W. Goldfish retina: organization for simultaneous color contrast. Science 58: 942-944. 1967.

Maximova E.M., Dimentman A.M., Maximov V.V., Nikolayev P.P., Orlov O.Yu. The physiological mechanisms of colour constancy. Neirofiziologiya. 7: 16–20. 1975.

Cronly-Dillon J.R. Units sensitive to direction of movement in goldfish tectum. Nature. 203: 214–215. 1964.

Liège B., Galand G. Types of single-unit visual responses in the trout’s optic tectum. In: Visual information processing and control of motor activity. Gudikov A. (Ed). 63–65.

Publ.House Bulg. Acad. Sci. Sofia. 1971.

Granda A.M., Fulbrook J.E. Classification of turtle retinal ganglion cells. J. Neurophysiol. 62: 723–737. 1989

O'Brien B.J., Isayama T., Berson D.M. Light responses of morphologically identified cat ganglion cells. Investigative Ophthalmology & Visual Science 40: ARVO Abstract 815. 1999.

van Wyk M., Taylor W.R., Vaney D.I. Local edge detectors: A substrate for fine spatial vision at low temporal frequencies in rabbit retina. J. Neurosci. 26: 13250–13263. 2006

Venkataramani S., Taylo W.R. Orientation selectivity in rabbit retinal ganglion cells is mediated by presynaptic inhibition. J. Neurosci. 30: 15664–15676. 2010.

Damjanović I., Maximova E.M., Aliper A.T., Maximov P.V., Maximov V.V. Opposing motion inhibits responses of direction-selective ganglion cells in the fish retina. J. Integr. Neurosci. 14: 53–72. 2015.

Baden T., Berens P., Franke K., Roson M. R., Bethge M., Euler T. The functional diversity of retinal ganglion cells in mouse. Nature. 529: 345–350. 2016.