НЕЗАМЕНИМЫЕ ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ В ФИЗИОЛОГИИ И МЕТАБОЛИЗМЕ РЫБ И ЧЕЛОВЕКА: ЗНАЧЕНИЕ, ПОТРЕБНОСТИ, ИСТОЧНИКИ
PDF

Ключевые слова

эйкозапентаеновая кислота
докозагексаеновая кислота
водная экосистема
корм для аквакультуры
диета человека
профилактика заболеваний человека

Как цитировать

Махутова, О. Н., & Гладышев, М. И. (2020). НЕЗАМЕНИМЫЕ ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ В ФИЗИОЛОГИИ И МЕТАБОЛИЗМЕ РЫБ И ЧЕЛОВЕКА: ЗНАЧЕНИЕ, ПОТРЕБНОСТИ, ИСТОЧНИКИ . Российский физиологический журнал им. И. М. Сеченова, 106(5), 601–621. https://doi.org/10.31857/S0869813920050040

Аннотация

Длинноцепочечные полиненасыщенные жирные кислоты (ПНЖК) семейства омега-3 (ω3 или n-3), а именно эйкозапентаеновая (ЭПК, 20:5n-3) и докозагексаеновая (ДГК, 22:6n-3), признаны веществами высокой физиологической ценности для животных разных таксономических групп, включая человека. N-3 ПНЖК обеспечивают нормальное функционирование сердечно-сосудистой и нервной систем, иммунитета и метаболизма в целом, а их применение носит профилактический характер. Лекарственные свойства этих веществ неоднозначны и активно обсуждаются в литературе.  Основным источником ЭПК и ДГК для человека является рыба. Содержание n-3 ПНЖК в рыбе зависит от большого числа факторов и, как следствие, варьирует в широких пределах. Потребности самих рыб в ПНЖК неодинаковы. Некоторые виды эффективно синтезируют ЭПК и ДГК из предшественников, другие же получают эти ЖК только с пищей. При этом в метаболизме всех рыб n-3 ПНЖК играют важную роль. Вылов дикой рыбы достиг своих пределов, но при этом он не удовлетворяет потребности человечества в n-3 ПНЖК. Для снижения дефицита ЭПК+ДГК в питании человека существует несколько путей, а именно, аквакультура, биотехнология микроорганизмов и генная инженерия.

https://doi.org/10.31857/S0869813920050040
PDF

Литература

Jakob E. M., Marshall S. D., Uetz G. W. Estimating fitness: a comparison of body condition indices. Oikos. 77: 61-67. 1996.

Froese R. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol. 22: 241-253. 2006.

Arts M. T., Kohler C. C. Health and condition in fish: the influence of lipids on membrane competency and immune response. Lipids in aquatic ecosystems. Arts M. T., Kainz M., Brett M. T. (Eds.). N.Y. Springer. 237-255. 2009.

Koven W. Key factors influencing juvenile quality in mariculture: a review. Isr. J. Aquacult.-Bamid. 55(4): 283-297. 2003.

Tocher D. R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Res. 41: 717-732. 2010.

Tocher D. R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish Sci. 11:107-184. 2003.

Sargent J. R., Tocher D. R., Bell J. G. The lipids. Fish Nutrition. 3rd edn. Halver J. E., Hardy R. W. (Eds.) San Diego. Acad. Press. 181-257. 2002.

Feller S. E. Acyl chain conformations in phospholipid bilayers: A comparative study of docosahexaenoic acid and saturated fatty acids. Chem. Phys. Lipids. 153: 76-80. 2008.

Wassell S. R., Stillwell W. Docosahexaenoic acid domains: the ultimate non-raft membrane domain. Chem. Phys. Lipids. 153: 57-63. 2008.

Simopoulos A. P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54: 438-463. 1991.

Simopoulos A. P. Human requirement for n-3 polyunsaturated fatty acids. Poult. Sci. 79: 961-970. 2000.

Schmitz G., Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 47: 147-155. 2008.

Glencross B. E. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquacult. 1(2): 71-124. 2009.

Santha C. R., Gatlin D. M. Growth response and fatty acid composition of channel catfish fry fed practical diets supplemented with menhaden fish oil. The Progressive Fish-Culturist. 53: 135-140. 1991.

Yang X., Tabachek J. L., Dick T. A. Effects of dietary n-3 polyunsaturated fatty acids on lipid and fatty acid composition and haematology of juvenile Arctic charr Salvelinus alpinus (L.). Fish Physiol. Biochem. 12: 409-420. 1994.

Toyes-Vargas E. A., Parrish C. C., Viana M. T., Carreón-Palau L., Magallón-Servín P., Magallón-Barajas F. J. Replacement of fish oil with camelina (Camelina sativa) oil in diets for juvenile tilapia (var. GIFT Oreochromis niloticus) and its effect on growth, feed utilization and muscle lipid composition, Aquaculture. 2020. doi.org/10.1016/j.aquaculture.2020.735177

Ahlgren G., Vrede T., Goedkoop W. Fatty acid ratios in freshwater fish, zooplankton and zoobenthos – are there specific optima? Lipids in aquatic ecosystems. Arts M. T., Kainz M., Brett M. T. (Eds.). N.Y. Springer. 147-178. 2009.

Gladyshev M. I., Sushchik N. N., Glushchenko L. A., Zadelenov V. A., Rudchenko A. E., Dgebuadze Y. Y. Fatty acid composition of fish species with different feeding habits from an Arctic Lake. Dokl. Biochem. Biophys. 474(1): 220-223. 2017.

Bell J. G., Ghioni C., Sargent J. R. Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar); a comparison with commercial diets. Aquaculture. 128(3-4): 301-313. 1994.

Bell J. G., Sargent J. R. Arachidonic acid in aquaculture feeds: Current status and future opportunities. Aquaculture. 218: 491-499. 2003.

Kalogeropulos N., Alexis M. N., Henderson R. J. Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture. 104: 293-308. 1992.

Watanabe T. Importance of docosahexaenoic acid in marine fish larvae. J. World Aquacult. Soc. 24: 152-161. 1993.

Ibeas C., Izquierdo M. S., Lorenzo A. Effect of different levels of n-3 highly unsaturated fatty acids on growth and fatty acid composition of juvenile gilthead seabream (Sparus aurata). Aquaculture. 127: 177-188. 1994.

Rodriguez C., Perez J. A., Badia P., Izquierdo M. S., Fernandez-Palacios H., Hernandez A. L. The n-3 highly unsaturated fatty acids requirements of gilthead seabream (Sparus aurata L.) larvae when using an appropriate DHA/EPA ratio in the diet. Aquaculture. 169: 9-23. 1998.

Hamre K., Opstad I., Espe M., Solbakken J., Hemre G.-I., Pittman K. Nutrient composition and metamorphosis success of Atlantic halibut (Hippoglossus hippoglossus, L.) larvae fed natural zooplankton or Artemia. Aquacul. Nutr. 8(2): 139-148. 2002.

Nemova N.N., Nefedova Z.A., Murzina S.A., Veselov A.E., Ripatti P.O. Comparative characteristics of the lipid and fatty acid status of eyed-stage atlantic salmon embryos reared in natural and artificial environments. Biol. Bull. 42(6): 493-499. 2015.

Koven W., Barr Y., Lutzky S., Ben Atia I., Weiss R., Harel M., Behrens P., Tandler A. The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture. 193: 107-122. 2001.

Ishizaki Y., Takeuchi T., Watanabe T., Arimoto M., Shimizu K. A preliminary experiment on the effect of Artemia enriched with arachidonic acid on survival and growth of yellowtail. Fish. Sci. 64: 295-299. 1998.

Villalta M., Estevez A., Bransden M. P. Arachidonic acid enriched live prey induces albinism in Senegalese sole (Solea senegalensis) larvae. Aquaculture. 245: 193-209. 2005.

Hamre K., Harboe T. Critical levels of essential fatty acids for normal pigmentation in Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture. 277: 101-108. 2008.

Hamre K., Harboe T. Artemia enriched with n-3 HUFA may give a large improvement in performance of Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture. 277: 239-243. 2008.

Lund I., Steenfeldt S. J., Banta G., Hansen B. W. The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eyemigration, pigmentation and prostaglandin content of common sole larvae (Solea solea L.). Aquaculture. 276: 143-153. 2008.

Sargent J. R., McEvoy L. A., Bell J. G. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture. 155: 119-129. 1997.

Castell J. D., Bell J. G., Tocher D. R., Sargent J. R. Effects of purified diets containing different combinations arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture. 128(3-4): 315-333. 1994.

Bell M. V., Dick J. R., Thrush M., Navarro J. C. Decreased 20:4n-6/ 20:5n-3 ratio in sperm from cultured sea bass, Dicentrarchus labrax, broodstock compared with wild fish. Aquaculture. 144: 189-199. 1996.

Castell J. D., Lee D. J., Sinnhuber R. O. Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): Lipid metabolism and fatty acid composition. J. Nutr. 102(1): 93-99. 1972.

Castell J. D., Sinnhuber R. O., Lee D. J., Wales J. H. Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): Physiological symptoms of EFA deficiency. J. Nutr. 102(1): 87-92. 1972.

Tocher D. R., Sargent J. R., Frerichs G. N. The fatty acid compositions of established fish cell lines after long-term culture in mammalian sera. Fish Physiol. Biochem. 5: 219-227. 1988.

Da Silva M. S., Julien P., Pérusse L., Vohl M. C., Rudkowska I. Natural rumen-derived trans fatty acids are associated with metabolic markers of cardiac health. Lipids. 50: 873-882. 2015.

Simopoulos A. P. Genetic variation and evolutionary aspects of diet. Antioxidant Status, Diet, Nutrition, and Health. Papas A. M., Boca Raton (Eds.). CRC Press. 65-88. 1999.

Gladyshev M. I., Arts M. T., Sushchik N. N. Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA + DHA) from aquatic to terrestrial ecosystems. Lipids in aquatic ecosystems. eds. Arts M. T., Kainz M., Brett M. T. (Eds.). N.Y. Springer. 179-209. 2009.

Van Kuijk F. J. G. M., Buck P. Fatty acid composition of the human macula and peripheral retina. Invest. Ophthalmol. Vis. Sci. 33(13):3493-3496. 1992.

Lauritzen L., Hansen H. S., Jorgensen M. H., Michaelsen K. F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40: 1-94. 2001.

McNamara R. K., Carlson S. E. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot. Essent. Fatty Acids. 75: 329-349. 2006.

Rocquelin G., Guenot L., Justrabo E., Grynberg A., David M. Fatty acid composition of human heart phospholipids: data from 53 biopsy specimens. J. Mol. Cell Cardiol. 17: 769-773. 1985.

Гладышев М.И. Незаменимые полиненасыщенные жирные кислоты и их пищевые источники для человека. Бюлл. Сибирск. федер. универ. Серия биол. 5(4):352-386. 2012. [Gladyshev M. I. Essential polyunsaturated fatty acids and their dietary sources for man. J. Sib. Fed. Univ. Biol. 5(4): 352-386. 2012. (In Russ)].

Hodson L. Skeaff C. M., Fielding B. A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47:348-380. 2008.

Hulbert A. J., Turner N., Storlien L. H., Else P. L. Dietary fats and membrane function: implications for metabolism and disease. Biol. Rev. 80: 155-169. 2005.

Mason R. P., Jacob R. F., Shrivastava S., Sherratt S. C. R., Chattopadhyay A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim. Biophys. Acta. 1858: 3131-3140. 2016.

Pamplona R. Advanced lipoxidation end-products. Chem.-Biol. Interactions. 192:14-20. 2011.

Zimmiak P. Relationship of electrophilic stress to aging. Free Radic. Biol. Med. 51:1087-1105. 2011.

Naudí A., Jové M., Ayala V., Portero-Ortín M., Barja G., Pamplona R. Membrane lipid unsaturation as physiological adaptation to animal longevity. Front Physiol. 4: 1-13. 2013.

Brenna J. T., Carlson S. E. Docosahexaenoic acid and human brain development: Evidence that a dietary supply is needed for optimal development. J. Hum. Evol. 77: 99-106. 2014.

Henderson R. J., Tocher D. R. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26: 281-347. 1987.

German O. L., Insua M. F., Gentili C., Rotstein N. P., Politi L. E. Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J. Neurochem. 98: 1507-1520. 2006.

Calder P. C. Docosahexaenoic acid. Ann. of Nutrition and Metabolism. 69: 8-21. 2016.

Crawford M. A., Bloom M., Broadhurst C. L., Schmidt W. F., Cunnane S. C., Galli C., Gehbremeskel K., Linseisen F., Lloyd-Smith J., Parkington J. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids. 34: S39-S47. 1999.

SanGiovanni J. P., Chew E. Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 24: 87-138. 2005.

Arterburn L. M., Hall E. B., Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 83(6): 1467S–1476S. 2006.

Qin X., Park H. G., Zhang J. Y., Lawrence P., Liu G., Subramanian N., Kothapalli K. S. D., Brenna J. T. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture. Prostaglandins Leukot. Essent. Fatty Acids. 104: 19-24. 2016.

Bartelt A., Heeren J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10(1):24-36. 2014.

Seale P. Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes. 64: 2369-2375. 2015.

Betz M. J., Enerback S. Human brown adipose tissue: what we have learned so far. Diabetes. 64: 2352-2360. 2015.

Lidell M. E., Betz M. J., Enerback S. Two types of brown adipose tissue in humans. Adipocyte. 3: 63-66. 2014.

Cunnane S. C., Francescutti V., Brenna J. T., Crawford M. A. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula fed infants not consuming dietary docosahexaenoate. Lipids. 35: 105-111. 2000.

Simopoulos A. P. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp. Biol. Med. 235: 785-795. 2010.

Tassoni D., Kaur G., Weisinger R. S., Sinclair A. J. The role of eicosanoids in the brain. Asia Pac. J. Clin. Nutr. 17(S1): 220-228. 2008.

Tapiero H., Nguyen G., Couvreur P., Tew K. D. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 56: 215-222. 2002.

Janssen C. I. F., Kiliaan A. J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Prog. Lipid Res. 53: 1-17. 2014.

Bazan N. G. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 29(5): 263-271. 2006.

De Caterina R. N–3 fatty acids in cardiovascular disease. N. Engl. J. Med. 364(25): 2439-2450. 2011.

Rice H. B., Bernasconi A., Maki K. C., Harris W. S., Von Schacky C., Calder P. C. Conducting omega-3 clinical trials with cardiovascular outcomes: Proceedings of a workshop held at ISSFAL 2014. Prostaglandins Leukot. Essent. Fatty Acids. 107: 30-42. 2016.

Albert C. M., Hennekens C. H., O’Donnell C. J., Ajani U. A., Carey V. J., Willett W. C., Ruskin J. N., Manson J. E. Fish consumption and risk of sudden cardiac death. JAMA. 279(1): 23-28. 1998.

Hu F. B., Bronner L., Willett W. C., Stampfer M. J., Rexrode K. M., Albert C. M., Hunter D., Manson J. E. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 287: 1815-1821. 2002.

Kromhout D., Giltay E. J., Geleijnse J. M. Alpha omega trial group, n-3 fatty acids and cardiovascular events after myocardial infarction. N. Engl. J. Med. 363: 2015-2026. 2010.

Rauch B., Schiele R., Schneider S., Diller F., Victor N., Gohlke H., Gottwik M., Steinbeck G., Castillo U. D., Sack R., Worth H., Katus H., Spitzer W., Sabin G., Senges J. OMEGA, arandomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 122: 2152-2159. 2010.

Strand E., Pedersen E. R., Svingen G. F., Schartum-Hansen H., Rebnord E. W., Bjørndal B., Seifert R., Bohov P., Meyer K., Hiltunen J. K., Nordrehaug J. E., Nilsen D. W., Berge R. K., Nygård O. Dietary intake of n-3 long-chain polyunsaturated fatty acids and risk of myocardial infarction in coronary artery disease patients with or without diabetes mellitus: a prospective cohort study. BMCMed. 11: 216. 2013.

Joffre C., Nadjar A., Lebbadi M., Calon F., Laye S. N-3 LCPUFA improves cognition: The young, the old and the sick. Prostaglandins Leukot. Essent. Fatty Acids. 91: 1-20. 2014.

Uauy R. D., Birch D. G., Birch E. E., Tyson J. E., Hoffman D. R. Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr. Res. 28(5): 485-492. 1990.

Colombo J., Kannass K. N., Shaddy D. J., Kundurthi S., Maikranz J. M., Anderson C. J., Blaga O. M., Carlson S. E. Maternal DHA and the development of attention in infancy and toddlerhood. Child. Dev. 75(4): 1254-1267. 2004.

Judge M. P., Harel O., Lammi-Keefe C. J. Maternal consumption of a docosahexaenoic acid containing functional food during pregnancy: Benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 months. Am. J. Clin. Nutr. 85: 1572-1577. 2007.

Jiao J., Li Q., Chu J., Zeng W., Yang M., Zhu S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 100(6): 1422-1436. 2014.

Tofail F., Kabir I., Hamadani J. D., Chowdhury F., Yesmin S., Mehreen F., Huda S. N. Supplementation of fish-oil and soy-oil during pregnancy and Psychomotor development of infants. J. Health Popul. Nutr. 24: 48-56. 2006.

Dunstan J. A., Simmer K., Dixon G., Prescott S. L. Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: a randomized controlled trial. Arch. Dis. Child Fetal. Neonatal Ed. 93: F45-F50. 2008.

Makrides M., Gibson R. A., McPhee A. J., Yelland L., Quinlivan J., Ryan P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 304: 1675-1683. 2010.

Givens D. I. Manipulation of lipids in animal-derived foods: Can it contribute to public health nutrition? Eur. J. Lipid Sci. Technol. 117: 1306-1316. 2015.

Dangour A. D., Allen E., Elbourne D., Fasey N., Fletcher A. E., Hardy P., Holder G. E., Knight R., Letley L., Richards M., Uauy R. Effect of 2-yn-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am. J .Clin. Nutr. 91: 1725-1732. 2010.

Yurko-Mauro K., McCarthy D., Rom D., Nelson E. B., Ryan A. S., Blackwell A., Salem N. Jr., Stedman M. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 6: 456-464. 2010.

Dacks P. A., Shineman D. W., Fillit H. M. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease. J. Nutr. Health Aging. 17: 240-251. 2013.

Rondanelli M., Giacosa A., Opizzi A., Pelucchi C., La Vecchia C., Montorfano G., Negroni M., Berra B., Politi P., Rizzo A. Long chain omega-3 polyunsaturated fatty acids supplementation in the treatment of elderly depression: Effects on depressive symptoms, on phospholipids fatty acids profile and on health-related quality of life. J. Nutr. Health Aging. 15: 37-44. 2011.

Calder P. C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie. 91: 791-795. 2009.

Fetterman J., Zdanowicz M. Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am. J. Health Syst. Pharm. 66: 1169-1179. 2009.

Figueras M., Olivan M., Busquets S., Lopez-Soriano F., Argiles J. Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: Improvement of the inflammatory status. Obesity. 19: 362-369. 2011.

Wall R., Ross R., Fitzgerald G., Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Res. 68: 280-289. 2010.

Hellmann J., Tang Y., Kosuri M., Bhatnagar A., Spitem M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J. 25: 2399-2407. 2011.

Witte T. R., Hardman W. E. The effects of omega‑3 polyunsaturated fatty acid consumption on mammary carcinogenesis. Lipids. 50: 437–446. 2015.

Astorg P. Dietary n-6 and n-3 polyunsaturated fatty acids and prostate cancer risk: A review of epidemiological and experimental evidence. Cancer Causes Control. 15(4): 367-386. 2004.

Leitzmann M., Stampfer M., Michaud D., Augustsson K., Colditz G., Willett W., Giovannucci E. Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am. J. Clin. Nutr. 80(1): 204-216. 2004.

Wu M., Harvey K., Ruzmeto N., Welch Z., Sech L., Jackson K., Stillwell W., Zaloga G., Siddiqui R. Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int. J. Cancer. 117: 340-348. 2005.

Murphy R., Mourtzakis M., Chu Q., Baracos V., Reima T., Mazurak V. Nutritional intervention with fish oil provides a benefit over standard of care for weight and skeletal muscle mass in patients with nonsmall cell lung cancer receiving chemotherapy. Cancer. 117: 1775-1782. 2011.

Morin C., Rousseau É., Fortin S. Anti-proliferative effects of a new docosapentaenoic acid monoacylglyceride incolorectal carcinoma cells. Prostaglandins Leukot. Essent. Fatty Acids. 89: 203-213. 2013.

Buettner R., Parhofer K. G., Woenckhaus M., Wrede C. E., Kunz-Schughart L. A., Schölmerich J., Bollheimer L. C. Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. J. Mol. Endocrinol. 36: 485-501. 2006.

Siriwardhana N., Kalupahana N. S., Moustaid-Moussa N. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 65: 211-222. 2012.

Givens D. I., Gibbs R. A. Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them. Proc. Nutr. Soc. 67: 273-280. 2008.

Eilander A., Harika R. K., Zock P. L. Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations? Eur. J. Lipid Sci. Technol. 117(9): 1370-1377. 2015.

Davis B. C., Kris-Etherton P. M. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am. J. Clin. Nutr. 78(3): 640S-646S. 2003.

Simopoulos A. P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233: 674-688. 2008.

Townsend N., Nichols M., Scarborough P., Rayner M. Cardiovascular disease in Europe — epidemiological update 2015. Eur. Heart J. 36: 2696-2705. 2015.

Бойцов С.А., Шальнова С.А., Деев А.Д. Смертность от сердечно-сосудистых заболеваний в Российской Федерации и возможные механизмы ее изменения. Журн. неврол. психиатр. им. С.С.Корсакова. 118(8):98-103. 2018. [Boytsov S. A., Shalnova S. A., Deev A. D. Cardiovascular mortality in the Russian Federation and possible mechanisms of its changes. Zh. Nevrol. Psikhiatr. Im S. S. Korsakova. 118(8): 98-103. 2018. (In Russ)].

FAO. Food and Agriculture Organisation. The State of World Fisheries and Aquaculture. FAO. Rome. 2016.

Betancor M. B., Olsen R. E., Solstorm D., Skulstad O. F., Tocher D. R. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis. Biochim. Biophys. Acta. 1861(3): 227-238. 2016.

Gladyshev M. I., Sushchik N. N., Tolomeev A. P., Dgebuadze Y. Y. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish Biol. Fisher. 28: 277-299. 2018.

Cheung L. K. Y., Tomita H., Takemori T. Mechanisms of docosahexaenoic and eicosapentaenoic acid loss from Pacific Saury and comparison of their retention rates after various cooking methods. J. Food Sci. 81(8): C1899-C1907. 2016.

Gladyshev M. I., Glushchenko L. A., Makhutova O. N., Rudchenko A. E., Shulepina S. P., Dubovskaya O. P., Zuev I. V., Kolmakov V. I., Sushchik N. N. Comparative analysis of content of omega-3 polyunsaturated fatty acids in food and muscle tissue of fish from aquaculture and natural habitats. Contemp. Probl. Ecol. 11(3): 297-308. 2018.

Huynh M. D., Kitts D. D. Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chem. 114: 912-918. 2009.

Joordens J. C. A., Kuipers R. S., Wanink J. H., Muskiet F. A. J. A fish is not a fish: Patterns in fatty acid composition of aquatic food may have had implications for hominin evolution. J. Hum. Evol. 77: 107-116. 2014.

Kitson A. P., Patterson A. C., Izadi H., Stark K. D. Pan-frying salmon in an eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) enriched margarine prevents EPA and DHA loss. Food Chem. 114: 927-932. 2009.

Gladyshev M. I., Sushchik N. N., Gubanenko G. A., Demirchieva S. M., Kalachova G. S. Effect of boiling and frying on the content of essential polyunsaturated fatty acids in muscle tissue of four fish species. Food Chem. 101:1694-1700. 2007.

Henriques J., Dick J. R., Tocher D. R., Bell J. G. Nutritional quality of salmon products available from major retailers in the UK: content and composition of n−3 long-chain polyunsaturated fatty acids. Br. J. Nutr. 112: 964-975. 2014.

Cladis D. P., Kleiner A. C., Freiser H. H., Santerre C. R. Fatty acid profiles of commercially available finfish fillets in the United States. Lipids. 49(10): 1005-1018. 2014.

Neff M. R., Bhavsar S. P., Ni F. J., Carpenter D. O., Drouillard K., Fisk A. T., Arts M. T. Risk-benefit of consuming Lake Erie fish. Environ Res. 134:57-65. 2014.

Chuang L. T., Bulbul U., Wen P. C., Glew R. H., Ayaz F. A. Fatty acid composition of 12 fish species from the Black Sea. J. Food Sci. 77(5): C512–C518. 2012.

Gladyshev M. I., Sushchik N. N., Gubanenko G. A., Demirchieva S. M., Kalachova G. S. Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food Chem. 96: 446-451. 2006.

Gladyshev M. I., Lepskaya E. V., Sushchik N. N., Makhutova O. N., Kalachova G. S., Malyshevskaya K. K., Markevich G. N. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon Oncorhynchus nerka. J. Food Sci. 77(12): C1307-C1310. 2012.

Heissenberger M., Watzke J., Kainz M. J. Effect of nutrition on fatty acid profiles of riverine, lacustrine, and aquaculture-raised salmonids of pre-alpine habitats. Hydrobiologia. 650: 243-254. 2010.

Sahari M. A., Farahani F., Soleimanian Y., Javadi A. Effect of frozen storage on fatty acid composition of the different tissues of four scombrid and one dussumeriid species. J. Appl. Ichthyol. 30: 381-391. 2014.

Ahlgren G., Blomqvist P., Boberg M., Gustafsson I.-B. Fatty acid content of the dorsal muscle – an indicator of fat quality in freshwater fish. J. Fish Biol. 45(1): 131-157. 1994.

Vasconi M., Caprino F., Bellagamba F., Busetto M. L., Bernardi C., Puzzi C., Moretti V. M. Fatty acid composition of freshwater wild fish in subalpine lakes: a comparative study. Lipids. 50: 283-302. 2015.

Wang D. H., Jackson J. R., Twining C., Rudstam L. G., Zollweg-Horan E., Kraft C., Lawrence P., Kothapalli K., Wang Z., Brenna J. T. Saturated branched chain, normal odd-carbon-numbered, and n-3 (omega-3) polyunsaturated fatty acids in freshwater fish in the Northeastern United States. J. Agric Food Chem. 64(40): 7512-7519. 2016.

Sushchik N. N., Gladyshev M. I., Kalachova G. S., Makhutova O. N., Ageev A. V. Comparison of seasonal dynamics of the essential PUFA contents in benthic invertebrates and grayling Thymallus arcticus in the Yenisei river. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 145: 278-287. 2006.

Sushchik N. N., Gladyshev M. I., Kalachova G. S. Seasonal dynamics of fatty acid content of a common food fish from the Yenisei River, Siberian grayling, Thymallus arcticus. Food Chem. 104: 1353-1358. 2007.

Gladyshev M. I., Sushchik N. N., Gubanenko G. A., Makhutova O. N., Kalachova G. S., Rechkina E. A., Malyshevskaya K. K. Effect of the way of cooking on contents of essential polyunsaturated fatty acids in filets of zander. Czech. J. Food Sci. 32(3): 226-231. 2014.

Gladyshev M. I., Krylov A. V., Sushchik N. N., Malin M. I., Makhutova O. N., Chalova I. V., Kalacheva G. S. Transfer of essential polyunsaturated fatty acids from an aquatic to terrestrial ecosystem through the fish–bird trophic pair. Dokl. Biol. Sci. 431: 121-123. 2010.

FAO. How to feed the world in 2050. Food and Agriculture Organization of the United Nations. Rome. 2009.

Pauly D., Christensen V., Guenette S., Pitcher T. J., Sumaila U. R., Walters C. J., Watson R., Zeller D. Towards sustainability in world fisheries. Nature. 418: 689-695. 2002.

Tocher D. R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 449: 94-107. 2015.

Wijekoon M. P. A., Parrish C. C., Mansou A. Effect of dietary substitution of fish oil with flaxseed or sunflower oil on muscle fatty acid composition in juvenile steelhead trout (Oncorhynchus mykiss) reared at varying temperatures. Aquaculture. 433: 74-81. 2014.

Benítez-Santana T., Masuda R., Juárez Carrillo E., Ganuza E., Valencia A., Hernández-Cruz C. M., Izquierdo M. S. Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus aurata larvae. Aquaculture. 264: 408-417. 2007.

Sales J., Glencross B. D. A meta-analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish species. Aquacult. Nutr. 17: e271–e287. 2011.

Turchini G. M., Torstensen B. E., Ng W. K. Fish oil replacement in finfish nutrition. Rev. Aquacult. 1: 10-57. 2009.

Turchini G. M., Ng W. K., Tocher D. R. Fish oil replacement and alternative lipid sources in aquaculture feeds. Boca Raton. CRC Press Taylor and Francis Group. 2011.

De Silva S. S. Aquaculture: a newly emergent food production sector – and perspectives of its impacts on biodiversity and conservation. Biodiversity and Conservation. 21: 3187-3220. 2012.

Gladyshev M. I., Sushchik N. N., Makhutova O. N. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostagl. Other Lipid Mediat. 107:117-126. 2013.

Cao Y., Cao Y., Zhao M. Biotechnological production of eicosapentaenoic acid: from a metabolic engineering point of view. Process Biochem. 47(9): 1320-1326. 2012.

Sijtsma L., de Swaaf M. E. Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 64: 146-153. 2004.

Ward O. P., Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 40: 3627-3652. 2005.

Damude H. G., Kinney A. J. Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids. 42: 179-185. 2007.

Mendes A., Reis A., Vasconcelos R., Guerra P., da Silva T. L. Crypthecodinium cohnii with emphasis on DHA production: a review. J. Appl. Phycol. 21: 199-214. 2009.

Khozin-Goldberg I., Iskandarov U., Cohen Z. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol. 91: 905-915. 2011.

Raghukumar S. Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Marine Biotechnol. 10: 631-640. 2008.

Patel V. K., Soni N., Prasad V., Sapre A., Dasgupta S., Bhadra B. CRISPR–Cas9 system for genome engineering of photosynthetic microalgae. Mol. Biotechnol. 61: 541–561. 2019.

Work V. H., Radakovits R., Jinkerson R. E., Meuser J. E., Elliot L. G., Vinyard D. J., Laurens L. M. L., Dismukes G. C., Posewitz M. C. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot. Cell. 9(8): 1251–1261. 2010.

Ajjawi I., Verruto J., Aqui M., Soriaga L. B., Coppersmith J., Kwok K., Peach L., Orchard E., Kalb R., Xu W., Carlson T. J., Francis K., Konigsfeld K., Bartalis J., Schultz A., Lambert W., Schwartz A. S., Brown R., Moellering E. R. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35(7): 647–652. 2017.

Poliner E., Pulman J. A., Zienkiewicz K., Childs K., Benning C., Farre E. M. A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant. Biotechnol. J. 16:298-309. 2018.

Rubio-Rodriguez N., Beltran S., Jaime I., de Diego S. M., Sanz M., Carballido J. R. Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov. Food Sci. Emerg. 11: 1-12. 2010.

Napier J. A., Haslam R. P., Beaudoin F., Cahoon E. B. Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Curr. Opin. Plant Biol. 19:68-75. 2014.

Napier J. A., Usher S., Haslam R. P., Ruiz-Lopez N., Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur. J. Lipid Sci. Technol. 117: 1317-1324. 2015.

Betancor M. B., Sprague M., Usher S., Sayanova O., Campbell P. J., Napier J. A., Tocher D. R. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Scient. Rep. 5: 8104. 2015.

Usher S., Haslam R. P., Ruiz-Lopez N., Sayanova O., Napier J. A. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: making fish oil substitutes in plants. Metab. Eng. Commun. 2: 93-98. 2015.

Ruiz-Lopez N., Haslam R. P., Napier J. A., Sayanova O. Successful high-level accumulation of fish oil omega-3 long chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 77: 198-208. 2014.

Betancor M. B., Sprague M., Sayanova O., Usher S., Campbell P. J., Napier J. A., Caballero M. J., Tocher D. R. Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.): Effects on tissue fatty acid composition, histology and gene expression. Aquaculture. 444: 1-12. 2015.

Hixson S. M., Parrish C. C., Anderson D. M. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chem. 157: 51-61. 2014.

Napier J. A., Olsen R.-E., Tocher D. R. Update on GM canola crops as novel sources of omega-3 fish oils. Plant Biotechnol. J. 17: 703–705. 2019.