ИЗМЕНЕНИЕ ПОВЕДЕНИЯ И ЭКСПРЕССИИ ГЕНОВ ИОНОТРОПНЫХ РЕЦЕПТОРОВ ГЛУТАМАТА В МОЗГЕ ВЗРОСЛЫХ КРЫС ПОСЛЕ НЕОНАТАЛЬНЫХ ВВЕДЕНИЙ БАКТЕРИАЛЬНОГО ЛИПОПОЛИСАХАРИДА
PDF

Ключевые слова

раннее развитие
мозг
воспаление
липополисахарид
тревожность
NMDA-рецептор
AMPA-рецептор

Как цитировать

Трофимов, А. Н., Ротов, А. Ю., Вениаминова, Е. А., Фомалонт, К., Шварц, А. П., & Зубарева, О. Е. (2020). ИЗМЕНЕНИЕ ПОВЕДЕНИЯ И ЭКСПРЕССИИ ГЕНОВ ИОНОТРОПНЫХ РЕЦЕПТОРОВ ГЛУТАМАТА В МОЗГЕ ВЗРОСЛЫХ КРЫС ПОСЛЕ НЕОНАТАЛЬНЫХ ВВЕДЕНИЙ БАКТЕРИАЛЬНОГО ЛИПОПОЛИСАХАРИДА. Российский физиологический журнал им. И. М. Сеченова, 106(3), 356–372. https://doi.org/10.31857/S0869813920030097

Аннотация

Большое количество исследований указывает на роль раннего опыта, в частности неонатальных инфекций, в формировании высокого уровня тревожности в последующей жизни. Одним из механизмов таких изменений может быть нарушение функциональной активности ионотропных глутаматных рецепторов, связанное с перестройкой их субъединичного состава.

Целью данной работы явилось изучение показателей тревожности и уровня экспрессии в медиальной префронтальной коре, вентральной и дорзальной областях гиппокампа генов субъединиц NMDA-рецепторов (Grin1, Grin2a, Grin2b) и AMPA-рецепторов (Gria1, Gria2) у взрослых крыс, которым в раннем возрасте вводили бактериальный липополисахарид (ЛПС) в дозах, индуцирующих развитие нейровоспалительных процессов. Экспрессию генов изучали методом ОТ-ПЦР в реальном времени.

Показано, что введение крысятам-самцам Вистар на 15-е, 18-е и 21-е сутки жизни ЛПС в дозе 25 или 50 мкг/кг индуцирует усиление экспрессии генов провоспалительных цитокинов: интерлейкина-1β и фактора некроза опухоли в областях гиппокампа. Через 3 месяца после введений ЛПС выявлено усиление экспрессии генов Grin2b, Gria1, Gria2 в вентральной области гиппокампа (после инъекций 50 мкг/кг ЛПС) и гена Gria2 в дорзальной области гиппокампа (после введения 25 мкг/кг ЛПС). Эти изменения сопровождаются нарушением исследовательского поведения в тесте Открытое поле и снижением уровня тревожности в Приподнятом крестообразном лабиринте.

Проведённое исследование показало, что введение бактериального ЛПС в раннем постнатальном онтогенезе, приводит к отставленным во времени изменениям экспрессии генов субъединиц NMDA- и AMPA-рецепторов в гиппокампе и связанных с ними форм поведения.

https://doi.org/10.31857/S0869813920030097
PDF

Литература

Bandelow B., Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin. Neurosci. 17(3):327–335. 2015.

Remes O., Brayne C., van der Linde R., Lafortune L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 6(7):e00497. 2016.

Maccari S., Krugers H. J., Morley-Fletcher S., Szyf M., Brunton P. J. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J. Neuroendocrinol. 26(10):707–723. 2014.

Goodwin R. D. Association between infection early in life and mental disorders among youth in the community: a cross-sectional study. BMC Public Health. 11:878. 2011.

Buchanan M. M., Hutchinson M., Watkins L. R., Yin H. Toll-like receptor 4 in CNS pathologies. J. Neurochem. 114(1):13–27. 2010.

Dantzer R. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 29(2):247–264. 2009.

Ling Z., Zhu Y., Tong C. W., Snyder J. A., Lipton J. W., Carvey P. M. Prenatal lipopolysaccharide does not accelerate progressive dopamine neuron loss in the rat as a result of normal aging. Exp. Neurol. 216(2):312–320. 2009.

Majidi J., Kosari-Nasab M., Salari A.-A. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. Brain Res. Bull. 120:1–13. 2016.

Majidi-Zolbanin J., Azarfarin M., Samadi H., Enayati M., Salari A.-A. Adolescent fluoxetine treatment decreases the effects of neonatal immune activation on anxiety-like behavior in mice. Behav. Brain Res. 250:123–132. 2013.

Dinel A.-L., Joffre C., Trifilieff P., Aubert A., Foury A., Le Ruyet P., Layé S. Inflammation early in life is a vulnerability factor for emotional behavior at adolescence and for lipopolysaccharide-induced spatial memory and neurogenesis alteration at adulthood. J. Neuroinflammation. 11:155. 2014.

Doosti M.-H., Bakhtiari A., Zare P., Amani M., Majidi-Zolbanin N., Babri S., Salari A.-A. Impacts of early intervention with fluoxetine following early neonatal immune activation on depression-like behaviors and body weight in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry. 43:55–65. 2013.

Tishkina A., Stepanichev M., Kudryashova I., Freiman S., Onufriev M., Lazareva N., Gulyaeva N. Neonatal proinflammatory challenge in male Wistar rats: Effects on behavior, synaptic plasticity, and adrenocortical stress response. Behav. Brain Res. 304:1–10. 2016.

Sun H., Jia N., Guan L., Su Q., Wang D., Li H., Zhu Z. Involvement of NR1, NR2A different expression in brain regions in anxiety-like behavior of prenatally stressed offspring. Behav. Brain Res. 257:1–7. 2013.

Sweatt J. D. Neural plasticity and behavior - sixty years of conceptual advances. J. Neurochem. 139 Suppl:179–199. 2016.

Diering G. H., Huganir R. L. The AMPA Receptor Code of Synaptic Plasticity. Neuron. 100(2):314–329. 2018.

Lisman J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos. Trans. R Soc. Lond. B Biol. Sci. 372(1715). 2017.

Sarantis K., Antoniou K., Matsokis N., Angelatou F. Exposure to novel environment is characterized by an interaction of D1/NMDA receptors underlined by phosphorylation of the NMDA and AMPA receptor subunits and activation of ERK1/2 signaling, leading to epigenetic changes and gene expression in rat hippoca. Neurochem. Int. 60(1):55–67. 2012.

Du J., Quiroz J., Yuan P., Zarate C., Manji H. K. Bipolar disorder: involvement of signaling cascades and AMPA receptor trafficking at synapses. Neuron Glia Biol. 1(3):231–243. 2004.

Du J., Creson T. K., Wu L.-J., Ren M., Gray N. A., Falke C., Wei Y., Wang Y., Blumenthal R., Machado-Vieira R., Yuan P., Chen G., Zhuo M., Manji H. K. The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J. Neurosci. 28(1):68–79. 2008.

Machado-Vieira R., Henter I. D., Zarate C. A. New targets for rapid antidepressant action. Prog. Neurobiol. 152:21–37. 2017.

Barkus C., McHugh S. B., Sprengel R., Seeburg P. H., Rawlins J. N. P., Bannerman D. M. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur. J. Pharmacol. 626(1):49–56. 2010.

Solati J. Dorsal hippocampal N-methyl-D-aspartate glutamatergic and δ-opioidergic systems modulate anxiety behaviors in rats in a noninteractive manner. Kaohsiung J. Med. Sci. 27(11):485–493. 2011.

Gielen M., Siegler Retchless B., Mony L., Johnson J. W., Paoletti P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 459(7247):703–707. 2009.

Hansen K. B., Yi F., Perszyk R. E., Furukawa H., Wollmuth L. P., Gibb A. J., Traynelis S. F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150(8):1081–1105. 2018.

Henley J. M., Wilkinson K. A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17(6):337–350. 2016.

Greger I. H., Esteban J. A. AMPA receptor biogenesis and trafficking. Curr. Opin. Neurobiol. 17(3):289–297. 2007.

Liu S., Lau L., Wei J., Zhu D., Zou S., Sun H.-S., Fu Y., Liu F., Lu Y. Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron. 43(1):43–55. 2004.

Wenzel A., Fritschy J. M., Mohler H., Benke D. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 68(2):469–478. 1997.

Babb T. L., Mikuni N., Najm I., Wylie C., Olive M., Dollar C., MacLennan H. Pre- and postnatal expressions of NMDA receptors 1 and 2B subunit proteins in the normal rat cortex. Epilepsy Res. 64(1–2):23–30. 2005.

du Bois T. M., Huang X.-F. Early brain development disruption from NMDA receptor hypofunction: relevance to schizophrenia. Brain Res. Rev. 53(2):260–270. 2007.

Lippman-Bell J. J., Zhou C., Sun H., Feske J. S., Jensen F. E. Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity. Mol. Cell Neurosci. 76:11–20. 2016.

Yuan T., Bellone C. Glutamatergic receptors at developing synapses: the role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors. Eur. J. Pharmacol. 719(1–3):107–111. 2013.

Szczurowska E., Mareš P. NMDA and AMPA receptors: development and status epilepticus. Physiol. Res. 62. Suppl 1:S21-S38. 2013.

Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 12(3):529–540. 1994.

Guilarte T. R., McGlothan J. L. Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Res. 790(1–2):98–107. 1998.

Farhy-Tselnicker I., Allen N. J. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural. Dev. 13(1):7. 2018.

Kumar S. S., Bacci A., Kharazia V., Huguenard J. R. A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 22(8):3005–3015. 2002.

Blanco-Suarez E., Liu T.-F., Kopelevich A., Allen N. J. Astrocyte-Secreted Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic GluA2 AMPA Receptors. Neuron. 100(5):1116-1132.e13. 2018.

Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates, 6th Edition. Acad. Press. 2007.

Lin W., Burks C. A., Hansen D. R., Kinnamon S. C., Gilbertson T. A. Taste receptor cells express pH-sensitive leak K+ channels. J. Neurophysiol. 92(5):2909–2919. 2004.

Rioja I., Bush K. A., Buckton J. B., Dickson M. C., Life P. F. Joint cytokine quantification in two rodent arthritis models: kinetics of expression, correlation of mRNA and protein levels and response to prednisolone treatment. Clin. Exp. Immunol. 137(1):65–73. 2004.

Giza C. C., Maria N. S. S., Hovda D. A. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J. Neurotrauma. 23(6):950–961. 2006.

Floyd D. W., Jung K.-Y., McCool B. A. Chronic ethanol ingestion facilitates N-methyl-D-aspartate receptor function and expression in rat lateral/basolateral amygdala neurons. J. Pharmacol. Exp. Ther. 307(3):1020–1029. 2003.

Malkin S. L., Amakhin D. V., Veniaminova E. A., Kim K. K., Zubareva O. E., Magazanik L. G., Zaitsev A. V. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience. 327:146–155. 2016.

Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408. 2001.

Harré E.-M., Galic M. A., Mouihate A., Noorbakhsh F., Pittman Q. J. Neonatal inflammation produces selective behavioural deficits and alters N-methyl-D-aspartate receptor subunit mRNA in the adult rat brain. Eur. J. Neurosci. PMC Canada manuscript submission. 27(3):644–653. 2008.

Gulyaeva N. V. Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage. Neurochem. Res. 44(6):1306–1322. 2019.

Fanselow M. S., Dong H.-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. Elsevier Inc. 65(1):7–19. 2010.

Floriou-Servou A., von Ziegler L., Stalder L., Sturman O., Privitera M., Rassi A., Cremonesi A., Thöny B., Bohacek J. Distinct Proteomic, Transcriptomic, and Epigenetic Stress Responses in Dorsal and Ventral Hippocampus. Biol. Psychiatry. 84(7):531–541. 2018.

Galic M. A., Riazi K., Henderson A. K., Tsutsui S., Pittman Q. J. Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiol. Dis. 36(2):343–351. 2009.

Mamad O., Islam M. N., Cunningham C., Tsanov M. Differential response of hippocampal and prefrontal oscillations to systemic LPS application. Brain Res. 1681:64–74. 2018.

Farrar W. L., Kilian P. L., Ruff M. R., Hill J. M., Pert C. B. Visualization and characterization of interleukin 1 receptors in brain. J. Immunol. 139(2):459–463. 1987.

Custódio C. S., Mello B. S. F., Filho A. J. M. C., de Carvalho Lima C. N., Cordeiro R. C., Miyajima F., Réus G. Z., Vasconcelos S. M. M., Barichello T., Quevedo J., de Oliveira A. C., de Lucena D. F., Macedo D. S. Neonatal Immune Challenge with Lipopolysaccharide Triggers Long-lasting Sex- and Age-related Behavioral and Immune/Neurotrophic Alterations in Mice: Relevance to Autism Spectrum Disorders. Mol. Neurobiol. 55(5):3775–3788. 2018.

Benmhammed H., El Hayek S., Nassiri A., Bousalham R., Mesfioui A., Ouichou A., El Hessni A. Effects of lipopolysaccharide administration and maternal deprivation on anxiety and depressive symptoms in male and female Wistar rats: Neurobehavioral and biochemical assessments. Behav. Brain Res. 362:46–55. 2019.

Sominsky L., Fuller E. A., Bondarenko E., Ong L. K., Averell L., Nalivaiko E., Dunkley P. R., Dickson P. W., Hodgson D. M. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety. PLoS One. 8(3):e57700. 2013.

Rico J. L. R., Ferraz D. B., Ramalho-Pinto F. J., Morato S. Neonatal exposure to LPS leads to heightened exploratory activity in adolescent rats. Behav. Brain Res. 215(1):102–109. 2010.

Claypoole L. D., Zimmerberg B., Williamson L. L. Neonatal lipopolysaccharide treatment alters hippocampal neuroinflammation, microglia morphology and anxiety-like behavior in rats selectively bred for an infantile trait. Brain Behav. Immun. 59:135–146. 2017.

Doenni V. M., Song C. M., Hill M. N., Pittman Q. J. Early-life inflammation with LPS delays fear extinction in adult rodents. Brain Behav. Immun. 63:176–185. 2017.

Spencer S. J., Heida J. G., Pittman Q. J. Early life immune challenge--effects on behavioural indices of adult rat fear and anxiety. Behav. Brain Res. 164(2):231–238. 2005.

Bina P., Rezvanfard M., Ahmadi S., Zarrindast M. R. Anxiolytic-Like Effects and Increase in Locomotor Activity Induced by Infusions of NMDA into the Ventral Hippocampus in Rat: Interaction with GABAergic System. Basic Clin. Neurosci. 5(4):267–276. 2014.

Motevasseli T., Rezayof A., Zarrindast M.-R., Nayer-Nouri T. Role of ventral hippocampal NMDA receptors in anxiolytic-like effect of morphine. Physiol. Behav. 101(5):608–613. 2010.