ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ КОГНИТИВНЫХ НАРУШЕНИЙ ПРИ НЕЙРОДЕГЕНЕРАТИВНЫХ И ОРГАНИЧЕСКИХ РАССТРОЙСТВАХ
PDF

Ключевые слова

доклиническое исследование
моделирование
болезнь Альцгеймера
когнитивное функционирование
когнитивный дефицит

Как цитировать

Дорофейкова, М. В., Петрова, Н. Н., & Егоров, А. Ю. (2019). ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ КОГНИТИВНЫХ НАРУШЕНИЙ ПРИ НЕЙРОДЕГЕНЕРАТИВНЫХ И ОРГАНИЧЕСКИХ РАССТРОЙСТВАХ. Российский физиологический журнал им. И. М. Сеченова, 106(2), 157–175. https://doi.org/10.31857/S086981392002003X

Аннотация

Моделирование психических расстройств на животных играет важную роль в изучении патофизиологических основ поведения и трансляции этих данных для выявления новых механизмов развития, биомаркеров и потенциальных методов терапии психических расстройств у человека. В статье представлен обзор литературы, посвященной моделированию болезни Альцгеймера, когнитивных нарушений при деменции сосудистого типа и органическом заболевании головного мозга на животных. Освещены фармакологические и генетические модели, их механизмы и характерные проявления. В то время как фармакологические модели широко применяются в исследованиях патогенеза и терапии когнитивных нарушений на протяжении многих лет, более современные, обладающие своими преимуществами трансгенные модели становятся всё более популярными в последние годы. Сейчас не существует модели, которая бы сочетала в себе все когнитивные, поведенческие, биохимические и гистологические нарушения, характерные для определённого вида деменции, однако разнообразие модельных животных открывает широкие возможности для доклинических исследований.

https://doi.org/10.31857/S086981392002003X
PDF

Литература

Stewart A. M., Kalueff A. V. Developing better and more valid animal models of brain disorders. Behav Brain Res. 276:28–31. 2015.

Al Dahhan N. Z., De Felice F.G., Munoz D.P. Potentials and Pitfalls of Cross-Translational Models of Cognitive Impairment. Front Behav Neurosci. 13:48. 2019.

Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 9(7):702–16. 2010.

Sarasa M., Pesini P. Natural non-trasgenic animal models for research in Alzheimer's disease. Curr Alzheimers Res. 6(2):171-178. 2009.

Dam D. V., Deyn P. P. D. Drug discovery in dementia: the role of rodent models. Nat Rev. 5:956–970. 2006.

Pype S., Moechars D., Dillen L., Mercken M. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein. J Neurochem. 84:602–609. 2003.

Neha, Sodhi R. K., Jaggi A. S., Singh N. Animal models of dementia and cognitive dysfunction. Life Sci. 109(2):73-86. 2014.

Erickson C. A., Barnes C. A. The neurobiology of memory changes in normal aging. Exp Gerontol. 38:61–69. 2003.

Cummings B. J., Head E., Ruehl W., Milgram N. W., Cotman C. W. The canine as an animal model of human aging and dementia. Neurobiol Aging. 17:259–268. 1996.

Head E., Moffat K., Das P., Sarsoza F., Poon W. W., Landsberg G., Cotman C. W., Murphy M. P. β-Amyloid deposition and tau phosphorylation in clinically characterized aged cats. Neurobiol Aging. 26:749–763. 2005.

Uchida K., Yoshino T., Yamaguchi R., Tateyama S., Kimoto Y., Nakayama H., Goto N. Senile plaques and other senile changes in the brain of an American black bear. Vet Pathol. 32:412–414. 1995.

Sani S., Traul D., Klink A., Niaraki N., Gonzalo-Ruiz A., Wu C.-K., Geula C. Distribution, progression and chemical composition of cortical amyloid-β deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathol. (Berl). 105:145–156. 2003.

Okuma Y., Nomura Y. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach. Jpn J Pharmacol. 78:399–404. 1998.

Chen Y., Wei G., Nie H., Lin Y., Tian H., Liu Y., Yu X., Cheng S., Yan R., Wang Q., Liu D. H., Deng W., Lai Y., Zhou J. H., Zhang S. X., Lin W. W., Chen D. F. β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in a senescence-accelerated prone 8 mice. Brain Res. 1552:41–54. 2014.

Stefanova N. A., Kozhevnikova O. S., Vitovtov A. O., Maksimova K. Y., Logvinov S. V., Rudnitskaya E. A., Korbolina E. E., Muraleva N. A., Kolosova N. G. Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle. 13(6):898-909. 2014.

Chen C., Li X. H., Zhang S., Tu Y., Wang Y. M., Sun H. T. 7,8-dihydroxyflavone ameliorates scopolamine induced Alzheimer-like pathologic dysfunction. Rejuvenation Res. 17(3):249-254. 2013.

Riedel G., Kanga S. H., Choib D. Y., Platt B. Scopolamine induced deficits in social memory in mice: reversal by donepezil. Behav Brain Res. 204:217–225. 2009.

Lannert H., Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 112:1199–1208. 1998.

Grunblatt E., Koutsilieri E., Hoyer S., Riederer P. Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. J Alzheimers Dis. 9:261–271. 2006.

Grunblatt E., Salkovic-Petrisic M., Osmanovic J., Riederer P., Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem. 101:757–770. 2007.

Lester-Coll E., Rivera S. J., Soscia K., Doiron K., Wands J. R., de la Monte S. M. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis. 9:13–33. 2006.

Mansouri M. T., Naghizadeh B., Ghorbanzadeh B., Farbood Y., Sarkaki A., Bavarsad K. Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacol Biochem Behav. 111:90–96. 2013.

Desrumaux C., Pisoni A., Meunier J., Deckert V., Athias A., Perrier V., Villard V., Lagrost L., Verdier J. M., Maurice T. Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology. 38:817–825. 2013.

Yamada K., Nabeshima T. Animal models of Alzheimer's disease and evaluation of antidementia drugs. Pharmacol Ther. 88:93–113. 2000.

Abahji T. N., Nill L., Ide N., Keller C., Hoffmann U., Weiss N. Acute hyperhomocysteinemia induces microvascular and macrovascular endothelial dysfunction. Arch Med Res. 38:411-416. 2007.

Herrmann R. W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 580:2994–3005. 2006.

Koladiya R. U., Jaggi A. S., Singh N., Sharma B. K. Ameliorative role of atorvastatin and pitavastatin in L-methionine induced vascular dementia in rats. BMC Pharmacol. 8:1–12. 2008.

Evrard P. A., Ragusi C., Boschi G., Verbeeck R. K., Scherrmann J. M. Simultaneous microdialysis in brain and blood of the mouse: extracellular and intracellular brain colchicine disposition. Brain Res. 786:122–127. 1998.

Ganguly R., Guha D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer's disease & protection by Moringa oleifera. Indian J Med Res. 128:744–751. 2008.

Kumar A., Seghal N., Naidu P. S., Padi S. S., Goyal R. Colchicine-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer's type. Pharmacol Rep. 59:274–283. 2007.

Kumar A., Dogra S., Prakash A. Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis. 2009:1–8. 2009.

Tilson H. A., Rogers B. C., Grimes L., Harry G. J., Peterson N. J., Hong J. S., Dyer R. S. Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats. Brain Res. 408:163–172. 1987.

Medina M., Avila J., Villanueva N. Use of okadaic acid to identify relevant phosphoepitopes in pathology: a focus on neurodegeneration. Mar Drugs. 11:1656–1668. 2013.

Song X. Y., Hu J. F., Chu S. F., Zhang Z., Xu S., Yuan Y. H., Han N., Liu Y., Niu F., He X., Chen N. H. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats. Eur J Pharmacol. 710:29–38. 2013.

Kamat P. K., Rai S., Nath C. Okadaic acid induced neurotoxicity: an emerging tool to study Alzheimer's disease pathology. Neurotoxicology. 37:163–172. 2013.

Zhang Z., Simpkins J. W. An okadaic acid induced cognitive deficiency and oxidative stress in an experimental model of tauopathy. Brain Res. 1359:233–246. 2009.

Ramirez C., Tercero I., Pineda A., Burgos J. S. Simvastatin is the statin that most efficiently protects against kainate-induced excitotoxicity and memory impairment. J Alzheimers Dis. 24:161–174. 2011.

Zhang J., Li P., Wang Y., Liu J., Zhang Z., Cheng W., Wang Y. Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PLoS One. 8:e56658. 2013.

Hosseini N., Alaei H., Reisi P., Radahmadi M. The effect of treadmill running on passive avoidance learning in animal model of Alzheimer disease. Int J Prev Med. 4:187–192. 2013.

Männistö P. T., Tuomainen P., Kutepova O., Borisenko S. A., Zolotov N., Voronina T. Effects of bilateral cholinotoxin infusions on the behavior and brain biochemistry of the rats. Pharmacol Biochem Behav. 49(1):33-40. 1994.

Bonda D. J., Lee H. G., Blair J. A., Zhu X., Perry G., Smith M. A. Role of metal dyshomeostasis in Alzheimer's disease. Metallomics. 3:267–270. 2011.

Jellinger K. A. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int Rev Neurobiol. 110:1–47. 2013.

Oshima E., Ishihara T., Yokota O., Nakashima-Yasuda H., Nagao S., Ikeda S., Naohara J., Terada S., Uchitomi Y. Accelerated tau aggregation, apoptosis and neurological dysfunction caused by chronic oral administration of aluminum in a mouse model of tauopathies. Brain Pathol. 23:633–644. 2013.

Bhattacharjee S., Zhao Y., Hill J. M., Culicchia F., Kruck T. P., Percy M. E., Pogue A. I., Walton J. R., Lukiw W. J. Selective accumulation of aluminum in cerebral arteries in Alzheimer's disease (AD). J Inorg Biochem. 126:35–37. 2013.

Luques L., Shoham S., Weinstock M. Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: prevention by ladostigil. Exp Neurol. 206:209–219. 2007.

Szabados T., Dul C., Majtenyi K., Hargitai J., Pénzes Z., Urbanics R. A chronic Alzheimer's model evoked by mitochondrial poison sodium azide for pharmacological investigations. Behav Brain Res. 154:31–40. 2004.

Zhang L., Zhang R. Y., Li Y. L., Zhang L., Ye C. F., Li L. Effects of Shenwu capsule on learning-memory ability and cholinergic function of brain in AD-like rat model induced by chronic infusion of sodium azide by minipump. Zhongguo Zhong Yao Za Zhi. 38:1300–1305. 2013.

Sharma V. K. Experimental models for Alzheimer's disease. Mech View. 1:13–22. 2010.

Yamada K., Noda Y., Nakayama S., Komori Y., Sugihara H., Hasegawa T., Nabeshima T. Role of nitric oxide in learning and memory and in monoamine metabolism in the rat brain. Br J Pharmacol. 115:852–858. 1995.

Balducci C., Forloni G. APP transgenic mice. Their use and limitations. Neuromol Med. 13:117–137. 2010.

Umeda T., Maekawa S., Kimura T., Takashima A., Tomiyama T., Mori H. Neurofibrillary tangle formation by introducing wild-type human tau into APP transgenic mice. Acta Neuropathol. 127(5):685-698. 2014.

Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., Carr T., Clemes J., Donaldson T., Gillespie F., Guido T., Hagopian S., Johnson-Wood K., Khan K., Lee M., Leibowitz P., Lieberburg I., Little S., Masliah E., McConlogue L., Montoya-Zavala M., Mucke L., Paganini L., Penniman E., Power M., Schenk D., Seubert P., Snyder B., Soriano F., Tan H., Vitale J., Wadsworth S., Wolozin B., Zhao J. Alzheimer-type neuropathology in transgenic mice overexpressing V717F b-amyloid precursor protein. Nature. 373:523–527. 1995.

Puzzo D., Gulisano W., Palmeri A., Arancio O. Rodent models for Alzheimer's disease drug discovery. Expert Opin Drug Discov. 10(7):703–711. 2015.

Elder G. A., Gama Sosa M. A., Gasperi R. D. Transgenic mouse models of Alzheimer's disease. Mt Sinai J Med. 77:69–81. 2010.

Sturchler-Pierrat C., Staufenbiel M. Pathogenic mechanisms of Alzheimer's disease analyzed in the APP23 transgenic mouse model. Ann NY Acad Sci. 920:134–139. 2000.

Calhoun M. E., Wiederhold K. H., Abramowski D. Amyloid plaques and neuron death in APP transgenic mice. Nature. 395:755–756. 1998.

Carmo S. D., Cuello A. C. Modeling Alzheimer's disease in transgenic rats. Mol Neurodegener. 8:1–37. 2013.

Talboo J. K., Holtzman D. M. Animal models of Alzheimer's disease. Encycl Neurosci 415–421. 2009.

Nazem A., Sankowski R., Bacher M., Al-Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 12:74. 2015.

Wahrle S. E., Jiang H., Parsadanian M., Kim J., Li A., Knoten A., Jain S., Hirsch-Reinshagen V., Wellington C. L., Bales K. R., Paul S. M., Holtzman D. M. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest. 118:671–682. 2008.

Finch C. E., Shams S. Apolipoprotein E and sex bias in cerebrovascular aging of men and mice. Trends Neurosci. 39:625-637. 2016.

Dubal D.B., Broestl L., Worden K. Sex and gonadal hormones in mouse models of Alzheimer's disease: what is relevant to the human condition? Biol Sex Differ. 3:24. 2012.

Schmitz C., Rutten B. P., Pielen A., Schäfer S., Wirths O., Tremp G., Czech C., Blanchard V., Multhaup G., Rezaie P., Korr H., Steinbusch H. W., Pradier L., Bayer T. A. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease. Am J Pathol. 164:1495–1502. 2004.

Ertekin-Taner N. Genetics of Alzheimer's disease: a centennial review. Neurol Clin 25:611–667. 2007.

Parent A. T., Thinakaran G. Modeling presenilin-dependent familial Alzheimer's disease: emphasis on presenilin substrate-mediated signaling and synaptic function. Int J Alzheimers Dis. 2010:1–11. 2010.

Stokin G. B., Lillo C., Falzone T. L., Brusch R. G., Rockenstein E., Mount S. L., Raman R., Davies P., Masliah E., Williams D. S., Goldstein L. S. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 307:1282–1288. 2005.

Polydoro M., Acker C. M., Duff K., Castillo P. E., Davies P. Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci. 29:10741–10749. 2009.

Grimm M. O. W., Mett J., Stahlmann C. P., Haupenthal V. J., Zimmer V. C., Hartmann T. Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer's. Front Aging Neurosci. 5:1–27. 2013.

Farris W., Mansourian S., Chang Y., Lindsley L., Eckman E. A., Frosch M. P., Eckman C. B., Tanzi R. E., Selkoe D. J., Guenette S. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA. 100:4162–4167. 2003.

Van der Putten H., Wiederhold K. H., Probst A., Barbieri S., Mistl C., Danner S., Kauffmann S., Hofele K., Spooren W. P., Ruegg M. A., Lin S., Caroni P., Sommer B., Tolnay M., Bilbe G. Neuropathology in mice expressing human alpha-synuclein. J Neurosci. 20:6021–6029. 2000.

Andreasson K. I., Savonenko A., Vidensky S., Goellner J. J., Zhang Y., Shaffer A., Kaufmann W. E., Worley P. F., Isakson P., Markowska A. L. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci. 21:8198–209. 2001.

Capsoni S., Ugolini G., Comparini A. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci USA. 97:6826–6831. 2000.

Pesavento E., Capsoni S., Domenici L., Cattaneo A. Acute cholinergic rescue of synaptic plasticity in the neurodegenerating cortex of antinerve-growth-factor mice. Eur J Neurosci. 15:1030-1036. 2002.

Krstic D., Madhusudan A., Doehner J., Vogel P., Notter T., Imhof C. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation. 9:151. 2012.

Wood W. G., Li L., Muller W. E., Eckert G. P. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. J Neurochem. 129(4):559-572. 2013.

Herculano B., Tamura M., Ohba A., Shimatani M., Kutsuna N., Hisatsune T. β-Alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis. 33:983-997. 2013.

Sodhi R. K., Singh N. Defensive effect of lansoprazole in dementia of AD type in mice exposed to streptozotocin and cholesterol enriched diet. PLoS One. 31:e70487. 2013.

Reed B., Villeneuve S., Mack W., DeCarli C., Chui H. C., Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 71:195–200. 2014.

Snyder H. M., Corriveau R. A., Craft S., Faber J. E., Greenberg S. M., Knopman D., Lamb B. T., Montine T. J., Nedergaard M., Schaffer C. B., Schneider J. A., Wellington C., Wilcock D. M., Zipfel G. J., Zlokovic B., Bain L. J., Bosetti F., Galis Z. S., Koroshetz W., Carrillo M. C. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. 11(6):710-717. 2015.

Arvanitakis Z., Leurgans S. E., Barnes L. L., Bennett D. A., Schneider J. A. Microinfarct pathology, dementia, and cognitive systems. Stroke. 42(3):722–727. 2011.

Sudduth T. L., Powell D. K., Smith C. D., Greenstein A., Wilcock D. M. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J Cereb Blood Flow Metab. 33(5):708-715. 2013.

Gooch J., Wilcock D. M. Animal Models of Vascular Cognitive Impairment and Dementia (VCID). Cell Mol Neurobiol. 36(2):233-239. 2016.

Sudduth T. L., Weekman E. M., Brothers H. M., Braun K., Wilcock D. M. Beta-amyloid deposition is shifted to the vasculature and memory impairment is exacerbated when hyperhomocysteinemia is induced in APP/PS1 transgenic mice. Alzheimer’s Res Therapy. 6(3):32. 2014.

Li J. G., Pratico D. High levels of homocysteine results in cerebral amyloid angiopathy in mice. J Alzheimers Dis. 43(1):29–35. 2015.

Toyama K., Koibuchi N., Uekawa K., Hasegawa Y., Kataoka K., Katayama T., Sueta D., Ma M. J., Nakagawa T., Yasuda O., Tomimoto H., Ichijo H., Ogawa H., Kim-Mitsuyama S. Apoptosis signal-regulating kinase 1 is a novel target molecule for cognitive impairment induced by chronic cerebral hypoperfusion. Arterioscler Thromb Vasc Biol. 368:1326–1334. 2013.

Hattori Y., Enmi J., Kitamura A., Yamamoto Y., Saito S., Takahashi Y. A novel mouse model of subcortical infarcts with dementia. J Neurosci. 35(9):3915-3928. 2015.

Neto C. J. B. F., Paganelli R. A., Benetoli A., Lima K. C. M., Milani H. Permanent, 3-stage, 4-vessel occlusion as a model of chronic and progressive brain hypoperfusion in rats: a neurohistological and behavioral analysis. Behav Brain Res. 160(2):312-322. 2005.

Щербак Н. С., Галагудза М. М. Экспериментальные модели ишемического инсульта. Бюл ФЦСКЭ им. В А. Алмазова. 3:39-47. 2011.[ Scherbak N. S., Galagudza M. M. Experimental models of ischemic stroke. Byul FTSKSE them. In A. Almazova. 3: 39-47. 2011.(In Russ)].

Шмонин А. А., Мальцева М. Н., Мельникова Е. В. Доклинические исследования лекарственных средств на биологических моделях инсульта. Журн неврол психиатр. 12(2):45-52. 2017.[ Shmonin A. A., Maltseva M. N., Melnikova E. V. Preclinical studies of drugs on biological models of stroke. Zhurn nevrol psychiatrist. 12 (2): 45-52. 2017.(In Russ)].

Jiwa N. S., Garrard P., Hainsworth A. H. Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem. 115(4):814-828. 2010.

Niedowicz D. M., Reeves V. L., Platt T. L., Kohler K., Beckett T. L., Powell D. K., Lee T. L., Sexton T. R., Song E. S., Brewer L. D., Latimer C. S., Kraner S. D., Larson K. L., Ozcan S., Norris C. M., Hersh L. B., Porter N. M., Wilcock D. M., Murphy M. P. Obesity and diabetes cause cognitive dysfunction in the absence of accelerated β-amyloid deposition in a novel murine model of mixed or vascular dementia. ACTA Neuropathol Commun. 2:64. 2014.

Cognat E., Cleophax S., Domenga-Denier V., Joutel A. Early white matter changes in CADASIL: evidence of segmental intramyelinic oedema in a pre- clinical mouse model. Acta Neuropathol Commun. 2:49. 2014.

Zhang X., Le W. Pathological role of hypoxia in Alzheimer's disease. Exp Neurol. 223: 299–303. 2010.

Сысоев Ю. И., Оковитый С. В. Моделирование черепно-мозговых травм у лабораторных животных в нейрофармакологии. Вестник образования и развития науки Рос акад естествен наук. 22(3):66–73. 2018.[ Sysoev Yu. I., Okovity S. V. Modeling of head injuries in laboratory animals in neuropharmacology. Bulletin of education and development of science Ros acad natural sciences. 22 (3): 66–73. 2018.(In Russ)].

McNamara R. K., Skeleton R. W. Assessment of a cholinergic contribution to chlorodiazepoxide induced deficits of place learning in the Morris water maze. Pharmacol Biochem Behav. 41:529–538. 1992.

Nader K., Wang S. H. Fading in. Learn. Mem. 13:530–535. 2006.

White A. M., Matthews D. B., Best P. J. Ethanol, memory, and hippocampal function: a review of recent findings. Hippocampus. 10:88–93. 2000.

Mailliard W. S., Diamond I. Recent advances in the neurobiology of alcoholism: the role of adenosine. Pharmacol Ther. 101:39–46. 2004.

Westergren S., Rydenhag B., Bassen M., Archer T., Conradi N.G. Effects of prenatal alcohol exposure on activity and learning in Sprague Dawley rats. Pharmacol Biochem Behav. 55:515–520. 1996.

Hashemi Nosrat Abadi T., Vaghef L., Babri S., Mahmood-Alilo M., Beirami M. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats. Alcohol. 47:1058 309–316. 2013.

Savage L. M., Hall J. M., Resende L. S. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. Neuropsychol Rev. 22:195–209. 2012.

Karuppagounder S. S., Xu H., Shi Q., Chen L. H., Pedrini S., Pechman D., Baker H., Beal M. F., Gandy S. E., Gibson G. E. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiol Aging. 30:15. 2009.