РОЛЬ АУТОФАГИИ ПРИ ИНФЕКЦИЯХ
PDF

Ключевые слова

аутофагия
инфекция
ксенофагия
иммунитет

Как цитировать

Фрейдлин , И. С., Маммедова, Д. Т., & Старикова , Э. А. (2019). РОЛЬ АУТОФАГИИ ПРИ ИНФЕКЦИЯХ. Российский физиологический журнал им. И. М. Сеченова, 105(12), 1486–1501. https://doi.org/10.1134/S0869813919120057

Аннотация

Процесс аутофагии относят к нормальным физиологическим процессам в организме, направленным на регуляцию размеров клеточных популяций за счет поддержания баланса между выживанием и гибелью клеток. Аутофагия позволяет клетке утилизировать отдельные поврежденные молекулы и целые органоиды, выживать и обновляться в условиях стресса или голодания. Аутофагия привлекает особое внимание в связи с гомеостатическими функциями и важной ролью, которую играет этот процесс в антимикробной защите организма. При бактериальных и вирусных инфекциях развитие аутофагии часто индуцируется как способ защиты организма хозяина или механизм стратегии выживания патогена. В последние годы опубликованы результаты экспериментальных исследований, свидетельствующие о важной роли аутофагии в регуляции иммунной защиты организма. Аутофагия в качестве одного из факторов антимикробного иммунитета может способствовать очищению организма от возбудителей и в то же время обеспечивает кросс-презентацию микробных антигенов для индукции противомикробного иммунного ответа. Наряду с этим установлено, что многие патогены в процессе эволюции приобрели факторы вирулентности, способные вмешиваться в процесс аутофагии, извращая ее исходно защитную роль и снижая антимикробную защиту организма.

https://doi.org/10.1134/S0869813919120057
PDF

Литература

Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 132: 27—42. 2008.

Jiang P., Mizushima N. Autophagy and human diseases. Cell Res. 24: 69. 2014.

Levine B., Klionsky D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 6: 463—477. 2004.

Giampieri F., Afrin S., Forbes-Hernandez T.Y., Gasparrini M., Cianciosi D., Reboredo-Rodriguez P., Varela-Lopez A., Quiles J.L., Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid. Redox Signal. 30(4): 577—634. 2019.

Labbé K., Saleh M. Cell death in the host response to infection. Cell Death Differ. 15(9): 1339—1349. 2008.

de Duve C., Wattiaux R. The lysosome. Annu. Rev. Physiol. 28: 435—492. 1966

Del Roso A., Vittorini S., Cavallini G., Donati A., Gori Z., Masini M., Pollera M., Bergamini E. Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp. Gerontol. 38: 519—527. 2003.

Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19(6): 349—364. 2018.

Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gelinas C., Fan Y., Nelson D.A., Jin S., White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10: 51—64. 2006.

Klionsky D.J., Cregg J.M., Dunn W.A. Jr., Emr S.D., Sakai Y., Sandoval I.V., Sibirny A., Subramani S., Thumm M., Veenhuis M., Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev. Cell. 5(4): 539—545. 2003.

Kirkegaard K., Taylor M.P., Jackson W.T. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol. 2(4): 301—314. 2004.

Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5: 253—295. 2010.

Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., Bruns N.E., Tsokos M., Alt F.W., Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. U.S.A. 105: 3374—3379. 2008.

Lee I.H., Finkel T. Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284(10): 6322—6328. 2009.

Kume S., Uzu T., Horiike K., Chin-Kanasaki M., Isshiki K., Araki S., Sugimoto T., Haneda M., Kashiwagi A., Koya D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120(4): 1043—1055. 2010.

Mammucari C., Milan G., Romanello V., Masiero E., Rudolf R., Del Piccolo P., Burden S.J., Di Lisi R., Sandri C., Zhao J., Goldberg A.L., Schiaffino S., Sandri M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell. Metab. 6(6): 458—471. 2007.

Zhao Y., Wang L., Yang J., Zhang P., Ma K., Zhou J., Liao W., Zhu W.G. Anti-neoplastic activity of the cytosolic FoxO1 results from autophagic cell death. Autophagy. 6(7): 988—990. 2010.

Ruderman N.B., Xu X.J., Nelson L., Cacicedo J.M., Saha A.K., Lan F., Ido Y. AMPK and SIRT1: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 298(4): E751—E760. 2010.

Neufeld T.P. TOR-dependent control of autophagy: biting the hand that feeds. Curr. Opin. Cell Biol. 22(2): 157—168. 2010.

Behrends C., Sowa M.E., Gygi S.P., Harper J.W. Network organization of the human autophagy system. Nature. 466(7302): 68—76. 2010.

Wei Y., Sinha S., Levine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy. 4(7): 949—951. 2008.

Nasrin N., Kaushik V.K., Fortier E., Wall D., Pearson K.J., de Cabo R., Bordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One. 4(12): e8414. 2009.

Harding H.P., Zhang Y., Zeng H., Novoa I., Lu P.D., Calfon M., Sadri N., Yun C., Popko B., Paules R., Stojdl D.F., Bell J.C., Hettmann T., Leiden J.M., Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell. 11: 619—633. 2003.

Nakamura T., Furuhashi M., Li P., Cao H., Tuncman G., Sonenberg N., Gorgun C.Z., Hotamisligil G.S. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell. 140: 338—348. 2010.

He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43: 67—93. 2009.

Milani M., Rzymski T., Mellor H.R., Pike L., Bottini A., Generali D., Harris A.L. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res. 69: 4415—4423. 2009.

Saeki K., Yuo A., Okuma E., Yazaki Y., Susin S.A., Kroemer G., Takaku F. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ. 7: 1263—1269. 2000.

Maiuri M.C., Criollo A., Kroemer G. Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J. 29(3): 515—516. 2010.

Escoll P., Rolando M., Buchrieser C. Modulation of Host Autophagy during Bacterial Infection: Sabotaging Host Munitions for Pathogen Nutrition. Front. Immunol. 7: 81. 2016.

Birmingham C.L., Smith A.C., Bakowski M.A., Yoshimori T., Brumell J.H. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281: 11374—11383. 2006.

Gutierrez M.G., Master S.S., Singh S.B., Taylor G.A., Colombo M.I., Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 119: 753—766. 2004.

Zhao Z., Fux B., Goodwin M., Dunay I.R., Strong D., Miller B.C., Cadwell K., Delgado M.A., Ponpuak M., Green K.G., Schmidt R.E., Mizushima N., Deretic V., Sibley L.D., Virgin H.W. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe. 4: 458—469. 2008.

Py B.F., Lipinski M.M., Yuan J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy. 3: 117—125. 2007.

Nakagawa I., Amano A., Mizushima N., Yamamoto A., Yamaguchi H., Kamimoto T, Nara A., Funao J., Nakata M., Tsuda K., Hamada S., Yoshimori T. Autophagy defends cells against invading Group A Streptococcus. Science. 306: 1037—1040. 2004.

Joubert P.E., Meiffren G., Grégoire I.P., Pontini G., Richetta C., Flacher M., Azocar O., Vidalain P.O., Vidal M., Lotteau V., Codogno P., Rabourdin-Combe C., Faure M. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe. 6(4): 354—366. 2009.

Travassos L.H., Carneiro L.A.M., Ramjeet M., Hussey S., Kim Y.G., Magalhães J.G., Yuan L., Soares F., Chea E., Le Bourhis L., Boneca I.G., Allaoui A., Jones N.L., Nuñez G., Girardin S.E., Philpott D.J. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11: 55—62. 2010.

Sanjuan M.A., Dillon C.P., Tait S.W.G., Moshiach S., Dorsey F., Connell S., Komatsu M., Tanaka K., Cleveland J.L., Withoff S., Green D.R. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 450: 1253—1257. 2007.

Casanova J.E. Bacterial Autophagy: Offense and Defense at the Host-Pathogen Interface. Cell Mol. Gastroenterol. Hepatol. 4(2): 237—243. 2017.

Gatica D., Lahiri V., Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20(3): 233—242. 2018.

Kageyama S., Omori H., Saitoh T., Sone T., Guan J.-L., Akira S., Imamoto F., Noda T., Yoshimori T. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol. Biol. Cell. 22: 2290—2300. 2011.

Huang J., Brumell J.H. Bacteria-autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12: 101—114. 2014.

Sharma V.., Verma S., Seranova E., Sarkar S., Kumar D. Selective Autophagy and Xenophagy in Infection and Disease. Front Cell Dev. Biol. 6: 147. 2018.

Sumpter R. Jr., Levine B. Autophagy and innate immunity: triggering, targeting and tuning. Semin. Cell. Dev. Biol. 21: 699—711. 2010.

Siqueira M.D.S., Ribeiro R.M., Travassos L.H. Autophagy and Its Interaction With Intracellular Bacterial Pathogens. Front Immunol. 9: 935. 2018.

Baud V., Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 8(1): 33—40. 2009.

Liu L., Wise D.R., Diehl J.A., Simon M.C. Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J. Biol. Chem. 283: 31153—31162. 2008.

Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26: 1749—1760. 2007.

Alexander A., Cai S.L., Kim J., Nanez A., Sahin M., MacLean,K.H., Inoki K., Guan K.L., Shen J., Person M.D., Kusewitt D., Mills G.B., Kastan M.B., Walker C.L. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. U.S.A. 107: 4153—4158. 2010.

Huang Q., Wu Y.T., Tan H.L., Ong C.N., Shen H.M. A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 16: 264—277. 2009.

Wong C.H., Iskandar K.B., Yadav S.K., Hirpara J.L., Loh T., Pervaiz S. Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS ONE. 5: e9996. 2010.

Bensaad K., Cheung E.C., Vousden K.H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 28: 3015—3026. 2009.

Green D.R., Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature. 458: 1127—1130. 2009.

Kroemer G., Marino G., Levine B. Autophagy and the Integrated Stress Response. Mol. Cell. 40(2): 280—293. 2010.

Seay M., Patel S., Dinesh-Kumar S.P. Autophagy and plant innate immunity. Cell Microbiol. 8(6): 899—906. 2006.

Bento C.F., Renna M., Ghislat G., Puri C., Ashkenazi A., Vicinanza M., Menzies F.M., Rubinsztein D.C. Mammalian Autophagy: How Does It Work? Annu. Rev. Biochem. 85: 685—713. 2016.

Sakurai A., Maruyama F., Funao J., Nozawa T., Aikawa C., Okahashi N., Shintani S., Hamada S., Ooshima T., Nakagawa I. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J. Biol. Chem. 285: 22666—22675. 2010.

Nakagawa I., Amano A., Mizushima N., Yamamoto A., Yamaguchi H., Kamimoto T., Nara A., Funao J., Nakata M., Tsuda K., Hamada S., Yoshimori T. Autophagy defends cells against invading group A Streptococcus. Science. 306(5698): 1037—1040. 2004.

Bah A., Vergne I. Macrophage Autophagy and Bacterial Infections. Front Immunol. 8: 1483. 2017.

Barnett T.C., Liebl D., Seymour L.M., Gillen C..M, Lim J.Y., Larock C.N., Davies M.R., Schulz B.L., Nizet V., Teasdale R.D., Walker M.J. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe. 14: 675—672. 2013.

O'Seaghdha M., Wessels M.R. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog. 9(6): e1003394. 2013.

Schnaith A., Kashkar H., Leggio S.A., Addicks K., Kronke M., Krut O. Staphylococcus aureus subvert autophagy for induction of caspaseindependent host cell death. J. Biol. Chem. 282: 2695—2706. 2007.

Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., Sasakawa C. Escape of intracellular Shigella from autophagy. Science. 307: 727—731. 2005.

Choy A., Dancourt J., Mugo B., O'Connor T.J., Isberg R.R., Melia T.J., Roy C.R. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 338(6110): 1072—1076. 2012.

Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50(3): 314—352. 1986.

Gallego P., Planell R., Benach J., Querol E., Perez-Pons J.A., Reverter D. Structural characterization of the enzymes composing the arginine deiminase pathway in Mycoplasma penetrans. PLoS One. 7(10): e47886. 2012.

Starikova E.A., Sokolov A.V., Vlasenko A.Y., Burova L.A., Freidlin I.S., Vasilyev V.B. Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22. Biochem. Cell Biol. 94(2): 129—137. 2016.

Cusumano Z.T., Caparon M.G. Citrulline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1Fo-ATPase. J. Bacteriol. 197(7): 1288—1296. 2015.

Chiramel A.I., Brady N.R., Bartenschlager R. Divergent Roles of Autophagy in Virus Infection. Cells. 2: 83—104. 2013.

Vural A., Kehrl J.H. Autophagy in macrophages: impacting inflammation and bacterial infection. Scientifica (Cairo). 2014: 825463. 2014.

Münz C. Enhancing immunity through autophagy. Annu. Rev. Immunol. 27: 423—449. 2009.

Dengjel J., Schoor O., Fischer R., Reich M., Kraus M., Müller M., Kreymborg K., Altenberend F., Brandenburg J., Kalbacher H., Brock R., Driessen C., Rammensee H.G., Stevanovic S. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. U. S. A. 102(22): 7922—7927. 2005.

Paludan C., Schmid D., Landthaler M., Vockerodt M., Kube D., Tuschl T., Münz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 307(5709): 593—596. 2005.

Nimmerjahn F., Milosevic S., Behrends U., Jaffee E.M., Pardoll D.M., Bornkamm G.W., Mautner J. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur. J. Immunol. 33(5): 1250—1259. 2003.

Leung C.S., Haigh T.A., Mackay L.K., Rickinson A.B., Taylor G.S. Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proc. Natl. Acad. Sci. U. S. A. 107(5): 2165—2170. 2010.

Lee H.K., Mattei L.M., Steinberg B.E., Alberts P., Lee Y.H., Chervonsky A., Mizushima N., Grinstein S., Iwasaki A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity. 32(2): 227—239. 2010.

Nedjic J., Aichinger M., Emmerich J., Mizushima N., Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 455(7211): 396—400. 2008.

Schmid D., Pypaert M., Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 26(1): 79—92. 2007.

Comber J.D., Robinson T.M., Siciliano N.A., Snook A.E., Eisenlohr L.C. Functional macroautophagy induction by influenza A virus without a contribution to major histocompatibility complex class II-restricted presentation. J. Virol. 85(13): 6453—6463. 2011.

Jin Y., Sun C., Feng L., Li P., Xiao L., Ren Y., Wang D., Li C., Chen L. Regulation of SIV antigen-specific CD4+ T cellular immunity via autophagosome-mediated MHC II molecule-targeting antigen presentation in mice. PLoS One. 9(3): e93143. 2014.

Fonteneau J.F., Brilot F., Münz C., Gannagé M. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer. J. Immunol. 196(1): 64—71. 2016.

Zhou D., Li P., Lin Y., Lott J.M., Hislop A.D., Canaday D.H., Brutkiewicz R.R., Blum J.S. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity. 22(5): 571—581. 2005.

Münz C. Autophagy Beyond Intracellular MHC Class II Antigen Presentation. Trends Immunol. 37(11): 755—763. 2016.

Schmid D., Münz C. Innate and adaptive immunity through autophagy. Immunity. 27(1): 11—21. 2007.