ЗЕБРАДАНИО (ZEBRAFISH) КАК НОВАЯ ПЕРСПЕКТИВНАЯ МОДЕЛЬ В ТРАНСЛЯЦИОННОЙ НЕЙРОБИОЛОГИИ
PDF

Ключевые слова

Danio rerio
зебраданио
трансляционная биомедицина
нейробиология
моделирование заболеваний

Как цитировать

Кротова, Н., Лакстыгал, А., Таранов, А., Ильин, Н., Бытов, М., Волгин, А., Амстиславская, Т., Демин, К., & Калуев, А. (2019). ЗЕБРАДАНИО (ZEBRAFISH) КАК НОВАЯ ПЕРСПЕКТИВНАЯ МОДЕЛЬ В ТРАНСЛЯЦИОННОЙ НЕЙРОБИОЛОГИИ. Российский физиологический журнал им. И. М. Сеченова, 105(11), 1417–1435. https://doi.org/10.1134/S0869813919110062

Аннотация

Danio Rerio (zebrafish, зебраданио) – относительно новый модельный объект, все более активно используемый в различных биомедицинских исследованиях, включая изучение центральной нервной системы (ЦНС) и поиск новых лекарственных средств. Количество исследований, посвященных нейробиологии зебраданио, стремительно растет и в относительном размере превосходит рост публикаций по всем другим модельным организмам в биомедицине. Популярность модели обеспечили относительная простота ее использования, хорошо описанная физиология, высокая генетическая гомология с людьми, быстрое развитие, и низкая цена исследований. В работе обсуждается текущая роль зебраданио в трансляционной нейробиологии и потенциал их использования с новейшими методиками биологических исследований. Несмотря на то, что поиск и описание эффектов известных психоактивных веществ на зебраданио активно внедряется в повседневную практику, в том числе и в России, исследование заболеваний на данной модели остается ограниченным. Мы подчеркиваем важность исследований патогенеза ЦНС на зебраданио в связи с высоким потенциалом модели как объекта, эволюционная консервативность и относительная простота лабораторного применения которого может помочь определить основные биомаркеры гетерогенных заболеваний.

https://doi.org/10.1134/S0869813919110062
PDF

Литература

Singer P. Ethics and the limits of scientific freedom. The Monist. 79(2): 218-229. 1996.

Ladimer I. Ethical and legal aspects of medical research on human beings. J. Pub. L. 3: 467. 1954.

Franco N. Animal experiments in biomedical research: a historical perspective. Animals. 3(1): 238-273. 2013.

Plotkin S. L., Plotkin S. A. A short history of vaccination. Vaccines. 5: 1-16. 2004.

Zambrowicz B. P., Friedrich G. A. Comprehensive mammalian genetics: history and future prospects of gene trapping in the mouse. Internat. J. Devel. Biol. 42(7): 1025-1036. 2004.

Friese M. A., Montalban X., Willcox N., Bell J. I., Martin R., Fugger L. The value of animal models for drug development in multiple sclerosis. Brain. 129(8): 1940-1952. 2006.

Ruggeri B. A., Camp F., Miknyoczki S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem. Pharmacol. 87(1): 150-161. 2014.

Kalueff A. V., Echevarria D. J., Homechaudhuri S., Stewart A. M., Collier A. D., Kaluyeva A. A., Li S., Liu Y., Chen P., Wang J. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquatic Toxicol. 170: 297-309. 2016.

Engeszer R. E., Patterson L. B., Rao A. A., Parichy D. M. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish. 4(1): 21-40. 2007.

Fishman M. C., Stainier D. Y., Breitbart R. E., Westerfield M., Zebrafish: genetic and embryological methods in a transparent vertebrate embryo.In: Methods in Cell Biology. Elsevier. 67-82. 1997.

Dai Y. J., Jia Y. F., Chen N., Bian W. P., Li Q. K., Ma Y. B., Chen Y. L., Pei D. S. Zebrafish as a model system to study toxicology. Environment. Toxicol. Chem. 33(1): 11-17. 2014.

Lakstygal A. M., de Abreu M. S., Kalueff A. V. Zebrafish models of epigenetic regulation of CNS functions. Brain Res. Bull. 2018.

Dolgova N. V., Hackett M. J., MacDonald T. C., Nehzati S., James A. K., Krone P. H., George G. N., Pickering I. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms. Metallomics. 8(3): 305-312. 2016.

Li Q., Uitto J. Zebrafish as a model system to study skin biology and pathology. The Journal of investigative dermatology. 134(6): e21. 2014.

Kalueff A. V., Echevarria D. J., Stewart A. M., Gaining translational momentum: more zebrafish models for neuroscience research. Elsevier. 2014.

Tropepe V., Sive H. L. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes, Brain and Behavior. 2(5): 268-281. 2003.

Ganz J., Kroehne V., Freudenreich D., Machate A., Geffarth M., Braasch I., Kaslin J., Brand M. Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Research. 3. 2014.

Panula P., Chen Y. C., Priyadarshini M., Kudo H., Semenova S., Sundvik M., Sallinen V. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis. 40(1): 46-57. 2010.

Schaaf M. J., Champagne D., van Laanen I. H., van Wijk D. C., Meijer A. H., Meijer O. C., Spaink H. P., Richardson M. K. Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish. Endocrinology. 149(4): 1591-1599. 2008.

Kalueff A. V., Gebhardt M., Stewart A. M., Cachat J. M., Brimmer M., Chawla J. S., Craddock C., Kyzar E. J., Roth A., Landsman S., Gaikwad S., Robinson K., Baatrup E., Tierney K., Shamchuk A., Norton W., Miller N., Nicolson T., Braubach O., Gilman C. P., Pittman J., Rosemberg D. B., Gerlai R., Echevarria D., Lamb E., Neuhauss S. C., Weng W., Bally-Cuif L., Schneider H., Zebrafish Neuroscience Research C. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 10(1): 70-86. 2013.

Orger M. B., de Polavieja G. G. Zebrafish Behavior: Opportunities and Challenges. Annu. Rev Neurosci. 40: 125-147. 2017.

Kalueff A. V., Stewart A. M., Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 35(2): 63-75. 2014.

Meshalkina D. A., Kysil E. V., Warnick J. E., Demin K. A., Kalueff A. V. Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim (NY). 46(10): 378-387. 2017.

Stewart A. M., Yang E., Nguyen M., Kalueff A. V. Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry. 55: 67-79. 2014.

Lawrence C. The husbandry of zebrafish (Danio rerio): a review. Aquaculture. 269(1-4): 1-20. 2007.

Stewart A., Kadri F., DiLeo J., Min Chung K., Cachat J., Goodspeed J., Suciu C., Roy S., Gaikwad S., Wong K. The developing utility of zebrafish in modeling neurobehavioral disorders. Internat. J.Compar. Psychol. 23(1). 2010.

Maximino C., Marques de Brito T., Dias C. A., Gouveia A., Jr., Morato S. Scototaxis as anxiety-like behavior in fish. Na.t Protoc. 5(2): 209-216. 2010.

Levin E. D., Bencan Z., Cerutti D. T. Anxiolytic effects of nicotine in zebrafish. Physiol .Behav. 90(1): 54-58. 2007.

Grossman L., Utterback E., Stewart A., Gaikwad S., Chung K. M., Suciu C., Wong K., Elegante M., Elkhayat S., Tan J., Gilder T., Wu N., Dileo J., Cachat J., Kalueff A. V. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav. Brain Res. 214(2): 277-284. 2010.

Egan R. J., Bergner C. L., Hart P. C., Cachat J. M., Canavello P. R., Elegante M. F., Elkhayat S. I., Bartels B. K., Tien A. K., Tien D. H. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205(1): 38-44. 2009.

Wong K., Elegante M., Bartels B., Elkhayat S., Tien D., Roy S., Goodspeed J., Suciu C., Tan J., Grimes C., Chung A., Rosenberg M., Gaikwad S., Denmark A., Jackson A., Kadri F., Chung K. M., Stewart A., Gilder T., Beeson E., Zapolsky I., Wu N., Cachat J., Kalueff V. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res. 208(2): 450-457. 2010.

Stewart A., Wong K., Cachat J., Gaikwad S., Kyzar E., Wu N., Hart P., Piet V., Utterback E., Elegante M., Tien D., Kalueff A. V. Zebrafish models to study drug abuse-related phenotypes. Rev. Neurosci. 22(1): 95-105. 2011.

Bencan Z., Sledge D., Levin E. D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol. Biochem. Behav. 94(1): 75-80. 2009.

Cachat J., Stewart A., Grossman L., Gaikwad S., Kadri F., Chung K. M., Wu N., Wong K., Roy S., Suciu C. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protocols. 5(11): 1786. 2010.

Maximino C., de Brito T. M., Colmanetti R., Pontes A. A., de Castro H. M., de Lacerda R. I., Morato S., Gouveia A., Jr. Parametric analyses of anxiety in zebrafish scototaxis. Behav. Brain Res. 210(1): 1-7. 2010.

Stewart A., Maximino C., De Brito T. M., Herculano A. M., Gouveia A., Morato S., Cachat J. M., Gaikwad S., Elegante M. F., Hart P. C., Neurophenotyping of adult zebrafish using the light/dark box paradigm, in Zebrafish neurobehavioral protocols. Springer. 157-167. .2011.

Serra E., Medalha C., Mattioli R. Natural preference of zebrafish (Danio rerio) for a dark environment. Brazil J.Med. Biol.Res. 32(12): 1551-1553. 1999.

Pham M., Raymond J., Hester J., Kyzar E., Gaikwad S., Bruce I., Fryar C., Chanin S., Enriquez J., Bagawandoss S., Assessing social behavior phenotypes in adult zebrafish: Shoaling, social preference, and mirror biting tests, in Zebrafish protocols for neurobehavioral research. Springer. 231-246. 2012.

Miller N., Gerlai R. Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav. Brain Res. 184(2): 157-166. 2007.

Wright D., Rimmer L. B., Pritchard V. L., Krause J., Butlin R. K. Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften. 90(8): 374-377. 2003.

Ruhl N., McRobert S. The effect of sex and shoal size on shoaling behaviour in Danio rerio. J. Fish Biol. 67(5): 1318-1326. 2005.

Engeszer R. E., Ryan M. J., Parichy D. M. Learned social preference in zebrafish. Curr. Biol. 14(10): 881-884. 2004.

Gerlai R., Lahav M., Guo S., Rosenthal A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav. 67(4): 773-782. 2000.

Moretz J. A., Martins E. P., Robison B. D. Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav. Ecol.. 18(3): 556-562. 2007.

Ariyomo T. O., Watt P. J. The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. Animal Behavi. 83(1): 41-46. 2012.

Bass S. L., Gerlai R. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav. Brain Res. 186(1): 107-117. 2008.

Gerlai R. Zebrafish antipredatory responses: a future for translational research? Behav. Brain Res. 207(2): 223-231. 2010.

Daggett J. Evaluation and characterisation of two zebrafish models of schizophrenia University of St Andrews. 2016.

Kalueff A. V., Illustrated Zebrafish Neurobehavioral Glossary. In: The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. Kalueff A.V.( Editor). Springer Internat. Publi.: Cham. 291-317. 2017.

Cachat J., Stewart A., Grossman L., Gaikwad S., Kadri F., Chung K. M., Wu N., Wong K., Roy S., Suciu C., Goodspeed J., Elegante M., Bartels B., Elkhayat S., Tien D., Tan J., Denmark A., Gilder T., Kyzar E., Dileo J., Frank K., Chang K., Utterback E., Hart P., Kalueff A. V. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protoc. 5(11): 1786-1799. 2010.

Cognato G. d. P., Bortolotto J. W., Blazina A. R., Christoff R. R., Lara D. R., Vianna M. R., Bonan C. D. Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol. Learn. Memory. 98(4): 321-328. 2012.

Sison M., Gerlai R. Associative learning in zebrafish (Danio rerio) in the plus maze. Behav. Brain Res. 207(1): 99-104. 2010.

Echevarria D. J., Jouandot D. J., Toms C. N. Assessing attention in the zebrafish: Are we there yet? Progress Neuro-Psychopharmacol. Biol. Psychiatry. 35(6): 1416-1420. 2011.

Cachat J., Stewart A., Utterback E., Hart P., Gaikwad S., Wong K., Kyzar E., Wu N., Kalueff A. V. Three-dimensional neurophenotyping of adult zebrafish behavior. PloS one. 6(3): e17597. 2011.

Blaser R. E., Rosemberg D. B. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PloS one. 7(5): e36931. 2012.

Stewart A. M., Grieco F., Tegelenbosch R. A., Kyzar E. J., Nguyen M., Kaluyeva A., Song C., Noldus L. P., Kalueff A. V. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J. Neurosci. Methods. 255: 66-74. 2015.

Deisseroth K. Optogenetics. Nat. Methods. 8(1): 26. 2011.

Pastrana E. Optogenetics: controlling cell function with light. Nat. Methods. 8(1): 24. 2010.

Baier H., Scott E. K. Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight. Current Opin. Neurobiol. 19(5): 553-560. 2009.

Cao P., Sun W., Kramp K., Zheng M., Salom D., Jastrzebska B., Jin H., Palczewski K., Feng Z. Light-sensitive coupling of rhodopsin and melanopsin to Gi/o and Gq signal transduction in Caenorhabditis elegans. The FASEB J. 26(2): 480-491. 2012.

Schobert B., Lanyi J. K., Cragoe E. Evidence for a halide-binding site in halorhodopsin. J. Biol. Chem. 258(24): 15158-15164. 1983.

Duebel J., Marazova K., Sahel J.-A. Optogenetics. Curr. Opinion Ophthalmol. 26(3): 226. 2015.

Simmich J., Staykov E., Scott E., Zebrafish as an appealing model for optogenetic studies.In: Progress in brain research. Elsevier. 145-162.2012.

Kimura Y., Hisano Y., Kawahara A., Higashijima S.-i. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Scient. Reports. 4: 6545. 2014.

Nihongaki Y., Kawano F., Nakajima T., Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33(7): 755. 2015.

Kumar A., Pareek V., Raza K., Kumar P., Faiq M. A., Dantham S. Induction–reversal modeling of psychiatric disorders by functional manipulation of habenular pathways in zebrafish. Neurology, Psychiatry and Brain Res. 24: 1-8. 2017.

Schoonheim P. J., Arrenberg A. B., Del Bene F., Baier H. Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J. Neurosci. 30(20): 7111-7120. 2010.

Arrenberg A. B., Del Bene F., Baier H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 106(42): 17968-17973. 2009.

Douglass A. D., Kraves S., Deisseroth K., Schier A. F., Engert F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18(15): 1133-1137. 2008.

Wyart C., Del Bene F., Warp E., Scott E. K., Trauner D., Baier H., Isacoff E. Y. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature. 461(7262): 407. 2009.

Tomura M., Yoshida N., Tanaka J., Karasawa S., Miwa Y., Miyawaki A., Kanagawa O. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Nat.Acad. Sci. U.S.A. 105(31): 10871-10876. 2008.

Portugues R., Severi K. E., Wyart C., Ahrens M. B. Optogenetics in a transparent animal: circuit function in the larval zebrafish. Curr. Opinion neurobiol. 23(1): 119-126. 2013.

Higashijima S.-i., Masino M. A., Mandel G., Fetcho J. R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90(6): 3986-3997. 2003.

Brustein E., Marandi N., Kovalchuk Y., Drapeau P., Konnerth A. " In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca 2+ imaging. Pflügers Archiv. 446(6): 766-773. 2003.

Perez C. C., Lauri A., Symvoulidis P., Cappetta M., Erdmann A., Westmeyer G. G. Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera. J. Biomed. Optics. 20(9): 096009. 2015.

Naumann E. A., Kampff A. R., Prober D. A., Schier A. F., Engert F. Monitoring neural activity with bioluminescence during natural behavior. Nat. Neurosci. 13(4): 513. 2010.

Kim D. H., Kim J., Marques J. C., Grama A., Hildebrand D. G., Gu W., Li J. M., Robson D. N. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods. 14(11): 1107. 2017.

Ritter D. A., Bhatt D. H., Fetcho J. R. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J. Neurosci. 21(22): 8956-8965. 2001.

Deán-Ben X. L., Gottschalk S., Sela G., Shoham S., Razansky D. Functional optoacoustic neuro-tomography of calcium fluxes in adult zebrafish brain in vivo. Optics Letters. 42(5): 959-962. 2017.

Barbazuk W. B., Korf I., Kadavi C., Heyen J., Tate S., Wun E., Bedell J. A., McPherson J. D., Johnson S. L. The syntenic relationship of the zebrafish and human genomes. Genome Res. 10(9): 1351-1358. 2000.

Vogel A. M., Weinstein B. M. Studying vascular development in the zebrafish. Trends in Cardiovasc. Medicine. 10(8): 352-360. 2000.

Sager J. J., Bai Q., Burton E. A. Transgenic zebrafish models of neurodegenerative diseases. Brain Struct. Function. 214 (2-3): 285-302. 2010.

Gray C., Loynes C. A., Whyte M. K., Crossman D. C., Renshaw S. A., Chico T. J. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thrombosis and Haemostasis. 105 (05): 811-819. 2011.

Santoriello C., Zon L. I. Hooked! Modeling human disease in zebrafish. J. Clin. Investig. 122(7): 2337-2343. 2012.

Li M., Zhao L., Page-McCaw P. S., Chen W. Zebrafish genome engineering using the CRISPR–Cas9 system. Trends in Genetics. 32 (12): 815-827. 2016.

Lawson N. D. Reverse genetics in zebrafish: mutants, morphants, and moving forward. Trends in Cell Biol. 26(2): 77-79. 2016.

Laakso A., Bergman J., Haaparanta M., Vilkman H., Solin O., Syvälahti E., Hietala J. Decreased striatal dopamine transporter binding in vivo in chronic schizophrenia. Schizophr. Res. 52(1-2): 115-120. 2001.

Seeman P., Guan H.-C., Van Tol H. H. Dopamine D4 receptors elevated in schizophrenia. Nature. 365 (6445): 441. 1993.

Mackay A. V., Iversen L. L., Rossor M., Spokes E., Bird E., Arregui A., Creese I., Snyder S. H. Increased brain dopamine and dopamine receptors in schizophrenia. Archives Gener. Psychiatry. 39(9): 991-997. 1982.

Levy F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Austral. & New Zealand J.Psychiatry. 25(2): 277-283. 1991.

Wang G., Zhang G., Li Z., Fawcett C. H., Coble M., Sosa M. X., Tsai T., Malesky K., Thibodeaux S. J., Zhu P. Abnormal Behavior of Zebrafish Mutant in Dopamine Transporter Is Rescued by Clozapine. Science. 17: 325-333. 2019.

Aguilera G. HPA axis responsiveness to stress: implications for healthy aging. Exp. Gerontol. 46(2-3): 90-95. 2011.

Pariante C. M., Lightman S. L. The HPA axis in major depression: classical theories and new developments. Trends in Neurosci. 31(9): 464-468. 2008.

Canavello P. R., Cachat J. M., Beeson E. C., Laffoon A. L., Grimes C., Haymore W. A., Elegante M. F., Bartels B. K., Hart P. C., Elkhayat S. I., Measuring endocrine (cortisol) responses of zebrafish to stress, in Zebrafish neurobehavioral protocols. Springer. 135-142. 2011.

Young A. H. Cortisol in mood disorders. Stress. 7(4): 205-208. 2004.

Levine A., Zagoory-Sharon O., Feldman R., Lewis J. G., Weller A. Measuring cortisol in human psychobiological studies. Physiol. & Behavior. 90(1): 43-53. 2007.

McEwen B. S., Stellar E. Stress and the individual: mechanisms leading to disease. Arch. Intern. Med. 153(18): 2093-2101. 1993.

Bremner J. D. Does stress damage the brain? Biol. Psychiatry. 45(7): 797-805. 1999.

Claes S. Corticotropin‐releasing hormone (CRH) in psychiatry: from stress to psychopathology. Ann. Med. 36(1): 50-61. 2004.

Pittenger C., Duman R. S. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 33(1): 88. 2008.

Yehuda R. Biology of posttraumatic stress disorder. J. Clin. Psychiatry. 2001.

Corcoran C., Walker E., Huot R., Mittal V., Tessner K., Kestler L., Malaspina D. The stress cascade and schizophrenia: etiology and onset. Schizophr. Bull. 29(4): 671-692. 2003.

Ziv L., Muto A., Schoonheim P. J., Meijsing S. H., Strasser D., Ingraham H. A., Schaaf M. J., Yamamoto K. R., Baier H. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol. Psychiatry. 18(6): 681. 2013.

Griffiths B., Schoonheim P. J., Ziv L., Voelker L., Baier H., Gahtan E. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front. Behav. Neurosci. 6: 68. 2012.

Facchinello N., Skobo T., Meneghetti G., Colletti E., Dinarello A., Tiso N., Costa R., Gioacchini G., Carnevali O., Argenton F. nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor. Scient. Reports. 7(1): 4371. 2017.

Huang J., Zhong Z., Wang M., Chen X., Tan Y., Zhang S., He W., He X., Huang G., Lu H. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J. Neurosci. 35(6): 2572-2587. 2015.

Piato Â. L., Capiotti K. M., Tamborski A. R., Oses J. P., Barcellos L. J., Bogo M. R., Lara D. R., Vianna M. R., Bonan C. D. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Progr. Neuro-Psychopharmacol. Biol. Psychiatry. 35(2): 561-567. 2011.

Song C., Liu B.-P., Zhang Y.-P., Peng Z., Wang J., Collier A. D., Echevarria D. J., Savelieva K. V., Lawrence R. F., Rex C. S. Modeling consequences of prolonged strong unpredictable stress in zebrafish: complex effects on behavior and physiology. Progr. Neuro-Psychopharmacol.Biol. Psychiatry. 81: 384-394. 2018.

Jesse C., Donato F., Giacomeli R., Del Fabbro L., da Silva Antunes M., de Gomes M., Goes A., Boeira S., Prigol M., Souza L. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+, K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience. 289: 367-380. 2015.

Murakami S., Imbe H., Morikawa Y., Kubo C., Senba E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci.Res. 53(2): 129-139. 2005.

Grønli J., Bramham C., Murison R., Kanhema T., Fiske E., Bjorvatn B., Ursin R., Portas C. M. Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol.Biochem. Behav. 85(4): 842-849. 2006.

Radley J. J., Rocher A. B., Miller M., Janssen W. G., Liston C., Hof P. R., McEwen B. S., Morrison J. H. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cerebr. Cortex. 16(3): 313-320. 2005.

Radley J. J., Rocher A. B., Rodriguez A., Ehlenberger D. B., Dammann M., McEwen B. S., Morrison J. H., Wearne S. L., Hof P. R. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Compar. Neurology. 507(1): 1141-1150. 2008.

Chen Y., Dubé C. M., Rice C. J., Baram T. Z. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J. Neurosci. 28(11): 2903-2911. 2008.

Huang V., Butler A. A., Lubin F. D. Telencephalon transcriptome analysis of chronically stressed adult zebrafish. Scient. Reports. 9(1): 1379. 2019.

Ebner R., Ruben S. M., Human ependymin. Google Patents. 2002.

Chakravarty S., Reddy B. R., Sudhakar S. R., Saxena S., Das T., Meghah V., Swamy C. V. B., Kumar A., Idris M. M. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PloS one. 8(5): e63302. 2013.

Shashoua V. E. Ependymin, a Brain Extracellular Glycoprotein, and CNS Plasticity a. Ann. N. Y. Acad. Sci. 627(1): 94-114. 1991.

Golla S., Evans P., Metabolic and Genetic Causes of Autism, in Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease. Elsevier. 209-217.2015.

Vahedi S., Rajabian M., Misaghian A., Grbec D., Simon H. H., Alavian K. N. Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons. J. Biomed. Sci. 17(1): 66. 2010.

Zimmermann F. F., Gaspary K. V., Leite C. E., Cognato G. D. P., Bonan C. D. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol. and Teratol. 52: 36-41. 2015.

Lindeyer C. M., Reader S. M. Social learning of escape routes in zebrafish and the stability of behavioural traditions. Animal Behav. 79(4): 827-834. 2010.

Butail S., Mwaffo V., Porfiri M. Model-free information-theoretic approach to infer leadership in pairs of zebrafish. Phys. Rev. E. 93(4): 042411. 2016.

Wang Y., Zhong H., Wang C., Gao D., Zhou Y., Zuo Z. Maternal exposure to the water soluble fraction of crude oil, lead and their mixture induces autism-like behavioral deficits in zebrafish (Danio rerio) larvae. Ecotoxicol. and Environmental. Safety. 134: 23-30. 2016.

Maaswinkel H., Zhu L., Weng W. Assessing social engagement in heterogeneous groups of zebrafish: a new paradigm for autism-like behavioral responses. PloS one. 8(10): e75955. 2013.

Scerbina T., Chatterjee D., Gerlai R. Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study. Amino Acids. 43(5): 2059-2072. 2012.

Eddins D., Cerutti D., Williams P., Linney E., Levin E. D. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol. and Teratol. 32(1): 99-108. 2010.

Ng M.-C., Yang Y.-L., Lu K.-T. Behavioral and synaptic circuit features in a zebrafish model of fragile X syndrome. PloS one. 8(3): e51456. 2013.

Golzio C., Willer J., Talkowski M. E., Oh E. C., Taniguchi Y., Jacquemont S., Reymond A., Sun M., Sawa A., Gusella J. F. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11. 2 copy number variant. Nature. 485(7398): 363. 2012.

Oksenberg N., Stevison L., Wall J. D., Ahituv N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS genetics. 9(1): e1003221. 2013.

Howe K., Clark M. D., Torroja C. F., Torrance J., Berthelot C., Muffato M., Collins J. E., Humphray S., McLaren K., Matthews L. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496(7446): 498. 2013.

Wang L., Jiang W., Lin Q., Zhang Y., Zhao C. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l‐methionine‐induced zebrafish with schizophrenia‐like symptoms. Genes, Brain and Behavior. 15(8): 702-710. 2016.

Cachat J., Kyzar E. J., Collins C., Gaikwad S., Green J., Roth A., El-Ounsi M., Davis A., Pham M., Landsman S. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav. Brain Res. 236: 258-269. 2013.

Kyzar E. J., Collins C., Gaikwad S., Green J., Roth A., Monnig L., El-Ounsi M., Davis A., Freeman A., Capezio N. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Progress in Neuro-Psychopharmacol. and Biol. Psychiatry. 37(1): 194-202. 2012.

Association A. P. Diagnostic and statistical manual of mental disorders (DSM-5®). Am. Psychiatric Pub. 2013.

O’Reilly K., Donohoe G., Coyle C., O’Sullivan D., Rowe A., Losty M., McDonagh T., McGuinness L., Ennis Y., Watts E. Prospective cohort study of the relationship between neuro-cognition, social cognition and violence in forensic patients with schizophrenia and schizoaffective disorder. BMC Psychiatry. 15(1): 155. 2015.

Zimmermann F. F., Gaspary K. V., Siebel A. M., Bonan C. D. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav Brain Res. 311: 368-374. 2016.

Braff D., Schork N. J., Gottesman I. I., Endophenotyping schizophrenia. Am. Psychiatr. Assoc. 2007

Norton W. H. J. Toward developmental models of psychiatric disorders in zebrafish. Front.Neural Circuits. 7: 79. 2013.

Wang L., Jiang W., Lin Q., Zhang Y., Zhao C. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms. Genes Brain Behav. 15(8): 702-710. 2016.

Thyme S., Li E., Pieper L. SU97. Zebrafish Brain Activity Phenotypes Unify Schizophrenia-Associated Genes. Schizophr. Bull. 43(suppl_1): S196-S196. 2017.

Wood J. D., Bonath F., Kumar S., Ross C. A., Cunliffe V. T. Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain. Human Mol. Genetics. 18(3): 391-404. 2008.

Harrison P. J., Weinberger D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry. 10(1): 40. 2005.

Cheng Y.-C., Scotting P. J., Hsu L.-S., Lin S.-J., Shih H.-Y., Hsieh F.-Y., Wu H.-L., Tsao C.-L., Shen C.-J. Zebrafish rgs4 is essential for motility and axonogenesis mediated by Akt signaling. Cell. Mol. Life Sci. 70(5): 935-950. 2013.

Solek C. M., Feng S., Perin S., Mendes H. W., Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Development. Biol. 427(1): 131-147. 2017.

Di Cristo G. Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin. Genetics. 72(1): 1-8. 2007.

Hashimoto T., Volk D. W., Eggan S. M., Mirnics K., Pierri J. N., Sun Z., Sampson A. R., Lewis D. A. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J.Neurosci. 23(15): 6315-6326. 2003.

Demin K. A., Kolesnikova T. O., Khatsko S. L., Meshalkina D. A., Efimova E. V., Morzherin Y. Y., Kalueff A. V. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol. 62: 27-33. 2017.

Meshalkina D. A., Kysil E. V., Antonova K. A., Demin K. A., Kolesnikova T. O., Khatsko S. L., Gainetdinov R. R., Alekseeva P. A., Kalueff A. V. The Effects of Chronic Amitriptyline on Zebrafish Behavior and Monoamine Neurochemistry. Neurochem Res. 2018.

Kolesnikova T. O., Khatsko S. L., Shevyrin V. A., Morzherin Y. Y., Kalueff A. V. Effects of a non-competitive N-methyl-d-aspartate (NMDA) antagonist, tiletamine, in adult zebrafish. Neurotoxicol. Teratol. 59: 62-67. 2017.

Kolesnikova T. O., Khatsko S. L., Eltsov O. S., Shevyrin V. A., Kalueff A. V. When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt ‘flakka’on adult zebrafish. Neurotoxicol. and Teratol. 73: 15-21. 2019.

Шабанов П. Д., Лебедев В. А., Лебедев А. А., Бычков Е. Р. Влияние стресса новизны на поведенческие ответы Danio rerio и оценка дозозависимых эффектов анксиолитиков бензодиазепинового ряда на примере феназепама. Обзоры по клинической фармакологии и лекарственной терапии. 15(3). 2017. [Shabanov P. D., Lebedev V. A., Lebedev A. A., Bychkov E. R. Vliyanie stressa novizny na povedencheskie otvety Danio rerio i ocenka dozozavisimyh effektov anksiolitikov benzodiazepinovogo ryada na primere fenazepama. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii. 15(3). 2017 (In Russ.].

Williams S. M., Haines J. L., Moore J. H. The use of animal models in the study of complex disease: all else is never equal or why do so many human studies fail to replicate animal findings? Bioessays. 26(2): 170-179. 2004.

Seok J., Warren H. S., Cuenca A. G., Mindrinos M. N., Baker H. V., Xu W., Richards D. R., McDonald-Smith G. P., Gao H., Hennessy L. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci U.S.A. 110(9): 3507-3512. 2013.

Alini M., Eisenstein S. M., Ito K., Little C., Kettler A. A., Masuda K., Melrose J., Ralphs J., Stokes I., Wilke H. J. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 17(1): 2-19. 2008.

Kapourchali F. R., Gangadaran Surendiran L. C., Uitz E., Bahadori B., Moghadasian M. H. Animal models of atherosclerosis. World J. Clin. Cases: WJCC. 2(5): 126. 2014.

Van der Worp H. B., Howells D. W., Sena E. S., Porritt M. J., Rewell S., O'Collins V., Macleod M. R. Can animal models of disease reliably inform human studies? PLoS medicine. 7(3): e1000245. 2010.

Rico E., Rosemberg D., Seibt K., Capiotti K., Da Silva R., Bonan C. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol. and Teratol. 33(6): 608-617. 2011.