СТРУКТУРОСПЕЦИФИЧНЫЕ ИЗМЕНЕНИЯ СОДЕРЖАНИЯ МОНОАМИНОВ В МОЗГЕ ПРИ ОСТРОМ СТРЕССЕ, ВЫЗВАННОМ ОДНОКРАТНЫМ ВВЕДЕНИЕМ ФИЗИОЛОГИЧЕСКОГО РАСТВОРА
PDF

Ключевые слова

психофизиологический стресс
внутрибрюшинное введение
кортикостерон
моноамины
фронтальная кора
высокоэффективная жидкостная хроматография
мозговой микродиализ

Как цитировать

Наплёкова, П. Л., Кудряшов, Н. В., Касабов, К. А., Кудрин, В. С., & Андяржанова, Э. А. (2019). СТРУКТУРОСПЕЦИФИЧНЫЕ ИЗМЕНЕНИЯ СОДЕРЖАНИЯ МОНОАМИНОВ В МОЗГЕ ПРИ ОСТРОМ СТРЕССЕ, ВЫЗВАННОМ ОДНОКРАТНЫМ ВВЕДЕНИЕМ ФИЗИОЛОГИЧЕСКОГО РАСТВОРА. Российский физиологический журнал им. И. М. Сеченова, 105(12), 1546–1560. https://doi.org/10.1134/S0869813919120070

Аннотация

Внутрибрюшинное (в.б.) введение является широко применяемым способом системной доставки фармакологически активных веществ в экспериментальной нейрофизиологии. Этот способ введения подразумевает кратковременную иммобилизацию животного, а также сопровождается болевыми ощущениями, следовательно, выступает в качестве стрессора. В настоящем исследовании была проведена оценка нейрохимических и гормональных изменений, вызванных однократным в.б. введением физиологического раствора грызунам. Было показано, что в.б. введение физиологического раствора приводит к увеличению секреции кортикостерона у мышей линии С57Bl/6N, что подтверждало стрессогенность процедуры. У мышей этой линии в.б. введение физиологического раствора сопровождалось увеличением оборота дофамина во фронтальной коре, гиппокампе и хвостатом ядре, а также снижением норадреналина в гиппокампе и гипоталамусе; у крыс Вистар - увеличением соотношения между общим содержанием метаболитов дофамина и общим тканевым содержанием дофамина. Наблюдаемое у грызунов усиление активности дофаминергической системы после в.б. введения может оказывать влияние на когнитивные функции и работу системы вознаграждения мозга. Обнаруженный нейрохимический феномен должен приниматься во внимание при планировании экспериментальных исследований, использующих в.б. способ введения препаратов и направленных на изучение процессов обучения, памяти, внимания и подкрепления.

https://doi.org/10.1134/S0869813919120070
PDF

Литература

Ghosal S., Nunley A., Mahbod P., Lewis A.G., Smith E.P., Tong J., D'Alessio D.A., Herman J.P. Mouse handling limits the impact of stress on metabolic endpoints. Physiology & Behavior. 150: 31-37. 2015.

Gouveia K., Hurst J.L. Optimising reliability of mouse performance in behavioural testing: the major role of non-aversive handling. Scient. Rep. 7: 44999. 2017.

Stuart S.A., Robinson E.S. Reducing the stress of drug administration: implications for the 3Rs. Scient. Rep. 5: 14288. 2015.

Wahlsten D. Mouse Behavioral Testing: How to Use Mice in Behavioral Neuroscienceю 1st Edition ed. Acad. Press. London. 2011.

Buccafusco J.J. Methods of Behavior Analysis in Neuroscience. 2nd ed, Boca Raton (FL). CRC Press.Taylor & Francis. 2009.

Steiner M.A., Marsicano G., Nestler E.J., Holsboer F., Lutz B., Wotjak C.T. Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology. 33(1):54-67. 2008.

Baek J.M., Kwak S.C., Kim J.Y., Ahn S.J., Jun H.Y., Yoon K.H., Lee M.S., Oh J. Evaluation of a novel technique for intraperitoneal injections in mice. Lab. Animal. 44. 440-444. 2015.

Hunter R.G., Gagnidze K., McEwen B.S., Pfaff D.W. Stress and the dynamic genome: Steroids, epigenetics, and the transposome. Proc. Natl. Acad.Sci. U.S.A 112. 6828-6833. 2015.

McEwen B.S. Neurobiological and Systemic Effects of Chronic Stress. Chronic Stress 1. 2017.

Nasca C., Zelli D., Bigio B., Piccinin S., Scaccianoce S., Nistico R., McEwen B.S. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc. Natl. Acad.Sci. U.S.A. 112. 14960-14965. 2015.

Abercrombie E.D., Keefe K.A., DiFrischia D.S., Zigmond M.J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52. 1655-1658. 1989.

Cabib S., Kempf E., Schleef C., Mele A., Puglisi-Allegra S. Different effects of acute and chronic stress on two dopamine-mediated behaviors in the mouse. Physiology & Behavior. 43. 223-227. 1988.

Hajos-Korcsok E., Robinson D.D., Yu J.H., Fitch C.S., Walker E., Merchant K.M. Rapid habituation of hippocampal serotonin and norepinephrine release and anxiety-related behaviors, but not plasma corticosterone levels, to repeated footshock stress in rats. Pharmacol. Biochemi. Behav. 74. 609-616. 2003.

Kalivas P.W., Duffy P. Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res. 675. 325-328. 1995.

Yen Y.C., Gassen N.C., Zellner A., Rein T., Landgraf R., Wotjak C.T., Anderzhanova E. Glycogen synthase kinase-3beta inhibition in the medial prefrontal cortex mediates paradoxical amphetamine action in a mouse model of ADHD. Front. Behav. Neurosci. 9. 67. 2015.

Kao C.Y., Stalla G., Stalla J., Wotjak C.T., Anderzhanova E. Norepinephrine and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like symptoms in mice. Eur. J. Neurosci. 41. 1139-1148. 2015.

Paxinos G., Franklin K.B.J. The Mouse Brain in Stereotaxic Coordinates. 2nd Edition. Acad. Press. San Diego. 2001.

Андяржанова Э.А., Вотьяк С.Т. Влияние центральных β-адренергических рецепторов на высвобождение кортикостерона во время стресса у мышей. Рос. физиол. журн. им. И.М. Сеченова. 105 (8): 1-8. 2019. [Anderzhanova E.A., Wotjak C.T. Central β-adrenergic receptor signaling is involved in the tuning of stress-evoked corticosterone secretion in mice. Russ. J. Physiol. 105 (8): 1-8. 2019. (In Russ.)].

Андяржанова Э.А., Кудрин В.С., Вотьяк С.Т. Влияние эндоканнабиноида анандамида на эффективность норадренергическое нейропередачи в миндалевидном теле при остром стрессе у мышей. Рос.физиол. журн. им. И.М. Сеченова, 105 (9): 1122-1132. 2019. [Anderzhanova E.A., Kudrin V.S., Wotjak C.T. Anandamide prevents activation of norepinephrine transmission in the amygdala during acute stress in mice. Russ. J. Physiol. 105 (9). 1-11. 2019. (In Russ.)].

Anderzhanova E.A., Bachli H., Buneeva O.A., Narkevich V.B., Medvedev A.E., Thoeringer C.K., Wotjak C.T., Kudrin V.S. Strain differences in profiles of dopaminergic neurotransmission in the prefrontal cortex of the BALB/C vs. C57Bl/6 mice: consequences of stress and afobazole. Eur. J. Pharmacol. 708. 95-104. 2013.

Bolivar V.J. Intrasession and intersession habituation in mice: from inbred strain variability to linkage analysis. Neurobiol. Learn. Memory 92. 206-214. 2009.

Yau J.L., Noble J., Kenyon C.J., Ludwig M., Seckl J.R. Diurnal and stress-induced intra-hippocampal corticosterone rise attenuated in 11beta-HSD1-deficient mice: a microdialysis study in young and aged mice. Eur. J. Neurosci. 41. 787-792. 2015.

Golub Y., Mauch C.P., Dahlhoff M., Wotjak C.T. Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD). Behav. Brain Res. 205. 544-549. 2009.

Robinson T.E., Becker J.B., Young E.A., Akil H., Castaneda E. The effects of footshock stress on regional brain dopamine metabolism and pituitary beta-endorphin release in rats previously sensitized to amphetamine. Neuropharmacology. 26. 679-691. 1987.

Ling T.J., Forster G.L., Watt M.J., Korzan W.J., Renner K.J., Summers C.H. Social status differentiates rapid neuroendocrine responses to restraint stress. Physiology & Behavior 96. 218-232. 2009.

Puglisi-Allegra S., Imperato A., Angelucci L., Cabib S. Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res. 554. 217-222. 1991.

Anstrom K.K., Miczek K.A., Budygin E.A. Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience. 161. 3-12. 2009.

Tidey J.W., Miczek K.A. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res. 721. 140-149. 1996.

Altier N., Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65. 2269-2287. 1999.

Navratilova E., Xie J.Y., Okun A., Qu C., Eyde N., Ci S., Ossipov M.H., King T., Fields H.L., Porreca F. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc. Natl. Acad. Sci. U.S.A. 109. 20709-20713. 2012.

Badrinarayan A., Wescott S.A., Vander Weele C.M., Saunders B.T., Couturier B.E., Maren S., Aragona B.J. Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell. J. Neurosci. Official J. Society Neurosci. 32. 15779-15790. 2012.

Murphy C.A., Pezze M., Feldon J., Heidbreder C. Differential involvement of dopamine in the shell and core of the nucleus accumbens in the expression of latent inhibition to an aversively conditioned stimulus. Neuroscience. 97. 469-477. 2000.

Mahar I., Bambico F.R., Mechawar N., Nobrega J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 38. 173-192. 2014.

Renard C.E., Dailly E., David D.J., Hascoet M., Bourin M. Monoamine metabolism changes following the mouse forced swimming test but not the tail suspension test. Fundament. Clin. Pharmacol. 17. 449-455. 2003.

Hayley S., Borowski T., Merali Z., Anisman H. Central monoamine activity in genetically distinct strains of mice following a psychogenic stressor: effects of predator exposure. Brain Res. 892 (2): 293-300. 2001.

Shanks N., Zalcman S., Zacharko R.M., Anisman H. Alterations of central norepinephrine, dopamine and serotonin in several strains of mice following acute stressor exposure. Pharmacol. Biochem. Behav. 38 (1): 69-75. 1991.

Miura H., Naoi M., Nakahara D., Ohta T., Nagatsu T. Effects of moclobemide on forced-swimming stress and brain monoamine levels in mice. Pharmacol. Biochem. Behav. 53 (2): 469-475. 1996.

Carlsson A., Hansson L.O., Waters N., Carlsson M.L. Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci. 61. 75-94. 1997.

Labonte B., McLaughlin R.J., Dominguez-Lopez S., Bambico F.R., Lucchino I., Ochoa-Sanchez R., Leyton M., Gobbi G. Adolescent amphetamine exposure elicits dose-specific effects on monoaminergic neurotransmission and behaviour in adulthood. Internat. J. Neuropsychopharmacol. 15. 1319-1330. 2012.

Arnsten A.F. Catecholamine and second messenger influences on prefrontal cortical networks of "representational knowledge": a rational bridge between genetics and the symptoms of mental illness. Cerebr. Cortex. 17. Suppl 1. 6-15. 2007.

Cools R., D'Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry. 69. 113-125. 2011.

Arnsten A.F., Goldman-Rakic P.S. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Archiv. Gener. Psychiatry. 55. 362-368. 1998.

Broersen L.M. Attentional processes and learning and memory in rats: the prefrontal cortex and hippocampus compared. Progress Brain Res. 126. 79-94. 2000.

Gamo N.J., Lur G., Higley M.J., Wang M., Paspalas C.D., Vijayraghavan S., Yang Y., Ramos B.P., Peng K., Kata A., Boven L., Lin F., Roman L., Lee D., Arnsten A.F. Stress Impairs Prefrontal Cortical Function via D1 Dopamine Receptor Interactions With Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels. Biol. Psychiatry. 78. 860-870. 2015.

Glickstein S.B., Hof P.R., Schmauss C. Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits. J. Neurosci. Official J. Society Neurosci. 22. 5619-5629. 2002.

Mizoguchi K., Yuzurihara M., Ishige A., Sasaki H., Chui D.H., Tabira T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J. Neurosci. Official J. Society Neurosci. 20. 1568-1574. 2000.

Puig M.V., Rose J., Schmidt R., Freund N. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Front. Neur. Circuits. 8. 93. 2014.

Tse M.T., Cantor A., Floresco S.B. Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning. J. Neurosci. Official J. Society Neurosci. 31. 11282-11294. 2011.

Wass C., Pizzo A., Sauce B., Kawasumi Y., Sturzoiu T., Ree F., Otto T., Matzel L.D. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training. Learning & Memory. 20. 617-627. 2013.

McKlveen J.M., Myers B., Herman J.P. The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress. J. Neuroendocrinol. 27. 446-456. 2015.

Barsegyan A., Mackenzie S.M., Kurose B.D., McGaugh J.L., Roozendaal B. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. . Proc. Natl. Acad.Sci. U.S.A. 107. 16655-16660. 2010.

Myers B., McKlveen J.M., Herman J.P. Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front. Neuroendocrinol. 35. 180-196. 2014.

Gill K.M., Grace A.A. Differential effects of acute and repeated stress on hippocampus and amygdala inputs to the nucleus accumbens shell. Internat. J. Neuropsychopharmacol. 16. 2013-2025. 2013.

Goto Y., Grace A.A. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron. 47. 255-266. 2005.

Ikegami M., Uemura T., Kishioka A., Sakimura K., Mishina M. Striatal dopamine D1 receptor is essential for contextual fear conditioning. Scient. Reports. 4. 3976. 2014.

Schultz W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80. 1-27. 1998.

White N.M., Salinas J.A. Mnemonic functions of dorsal striatum and hippocampus in aversive conditioning. Behav. Brain Res.142. 99-107. 2003.

Schultz W. Dopamine reward prediction-error signalling: a two-component response. Nat. Rev. Neurosci. 17. 183-195. 2016.

Pryce C.R., Azzinnari D., Sigrist H., Gschwind T., Lesch K.P., Seifritz E. Establishing a learned-helplessness effect paradigm in C57BL/6 mice: behavioural evidence for emotional, motivational and cognitive effects of aversive uncontrollability per se. Neuropharmacology. 62.358-372. 2012.