ГЛИЯ В ТРЕХЧАСТНОМ НЕРВНО-МЫШЕЧНОМ СИНАПСЕ
PDF

Ключевые слова

нервно-мышечный синапс
перисинаптическая Шванновская клетка
нервно-мышечные дисфункции
боковой амиотрофический склероз
периферические нейропатии

Как цитировать

Проскурина, С. Е., & Петров, К. А. (2019). ГЛИЯ В ТРЕХЧАСТНОМ НЕРВНО-МЫШЕЧНОМ СИНАПСЕ. Российский физиологический журнал им. И. М. Сеченова, 105(10), 1203–1214. https://doi.org/10.1134/S0869813919100091

Аннотация

В данном обзоре рассматривается роль перисинаптических Шванновских клеток (ПШК) как активного компонента трехчастного синапса. Показана возможность модуляции синаптической передачи ПШК. Описываются механизмы, благодаря которым ПШК не только способна детектировать синаптическую активность, но и изменять ее. Кроме того, описываются изменения ПШК при патологиях периферической нервной системы и обсуждается возможность использования ПШК в качестве потенциальных мишеней для терапевтического воздействия.

https://doi.org/10.1134/S0869813919100091
PDF

Литература

Sanes J.R., Lichtman J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2(11):791-805. 2001.

Wu H., Xiong W.C., Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development. 137(7):1017-33. 2010.

Le Douarin N. M. Cell line segregation during peripheral nervous system ontogeny. Science. 231(4745), 1515–1522. 1986.

Jessen K. R., Brennan A., Morgan L., Mirsky R., Kent A.,Hashimoto Y. The Schwann cell precursor and itsfate: A study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron. 12(3), 509–527. 1994.

Barik A., Li L., Sathyamurthy A., Xiong W.C., Mei L. Schwann Cells in Neuromuscular Junction Formation and Maintenance. J. Neurosci. 36(38):9770-81. 2016.

Bastiani M.J., Goodman C.S. Guidance of neuronal growth cones in the grasshopper embryo. III. Recognition of specific glial pathways. J. Neurosci. 6(12):3542-51. 1986.

Sepp K.J., Schulte J., Auld V.J. Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev. Biol. 238(1):47-63. 2001.

Aigouy B., Van de Bor V., Boeglin M., Giangrande A. Time-lapse and cell ablation reveal the role of cell interactions in fly glia migration and proliferation. Development. 131(20):5127-38. 2004.

Bandtlow C.E., Heumann R., Schwab M.E., Thoenen H. Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J. 6(4):891-899. 1987.

Carroll S.L., Miller M.L., Frohnert P.W., Kim S.S., Corbett J.A. Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J. Neurosci. 17(5):1642-1659. 1997.

Feng Z., Ko C.P. Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-beta1. J. Neurosci. 28(39):9599-9609. 2008.

Fuentes-Medel Y., Ashley J., Barria R., Maloney R., Freeman M., Budnik V. Integration of a retrograde signal during synapse formation by glia-secreted TGF-β ligand. Curr. Biol. 22(19):1831-1838. 2012

Kerr K.S., Fuentes-Medel Y., Brewer C., Barria R., Ashley J., Abruzzi K.C., Sheehan A., Tasdemir-Yilmaz O.E., Freeman M.R., Budnik V. Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction. J. Neurosci. 34(8):2910-2920. 2014.

Arber S., Caroni P. J. Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. Cell Biol. 131(4):1083-1094. 1995.

Arikkath J., Campbell K.P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13(3):298-307. 2003.

Bishop D.L., Misgeld T., Walsh M.K., Gan W.B., Lichtman J.W. Axon branch removal at developing synapses by axosome shedding. Neuron. 44(4):651-661. 2004.

Tapia J.C., Wylie J.D., Kasthuri N., Hayworth K.J., Schalek R., Berger D.R., Guatimosim C., Seung H.S., Lichtman J.W. Pervasive synaptic branch removal in the mammalian neuromuscular system at birth. Neuron. 74(5):816-829. 2012.

Darabid H., Arbour D., Robitaille R., Glial cells decipher synaptic competition at the mammalian neuromuscular junction. J. Neurosci. 33(4):1297-1313. 2013.

Fuentes-Medel Y., Logan M.A., Ashley J., Ataman B., Budnik V., Freeman M.R. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol. 7.8:e1000184. 2009.

Smith I.W., Mikesh M., Lee Y. and Thompson W.J. Terminal Schwann Cells Participate in the Competition Underlying Neuromuscular Synapse Elimination. J. Neurosci. 33 (45) 17724-17736. 2013.

Katz B., Miledi R. The release of acetylcholine from nerve endings by graded electric pulses. Proc. R. Soc. B. 167:23-38. 1967.

De Robertis E.D., Bennett H.S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J. Biophys. Biochem. Cytol. 1(1):47-58. 1955.

Robertson J.D. The ultrastructure of a reptilian myoneural junction. J. Biophys. Biochem. Cytol. 2(4):381-94. 1956.

Fatt P., Katz B. The effect of sodium ions on neuromuscular transmission. J. Physiol. 118(1):73-87. 1952.

Del Castillo J., Katz B. Localization of active spots within the neuromuscular junction of the frog. J. Physiol. 132(3):630-49. 1956.

Katz B, Miledi R. Transmitter leakage from motor nerve endings. Proc. R. Soc. Lond. B Biol. Sci. 196 (1122):59-72. 1977.

Vyskocil F, Illés P. Non-quantal release of transmitter at mouse neuromuscular junction and its dependence on the activity of Na+-K+ ATP-ase. Pflugers Arch. 370 (3):295-7. 1977.

Davis R., Koelle G. Electron microscopic localization of acetylcholinesterase and nonspecific cholinesterase at the neuromuscular junction by the gold-thiocholine and gold-thiolacetic acid methods. J. Cell Biol. 34(1): 157-171. 1967.

Silinsky E., Redman R. ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J. Physiol. 477:117-127. 1994.

Boulland J.L., Qureshi T., Seal R.P., Rafiki A., Gundersen V., Bergersen L.H., Fremeau R.T.Jr., Edwards R.H., Storm‐Mathisen J., Chaudhry F.A. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J. Comp. Neurol. 480:264–280. 2004.

Malomouzh A.I, Mukhtarov M.R., Nikolsky E.E., Vyskocil F., Lieberman E.M., Urazaev A.K. Glutamate regulation of non-quantal release of acetylcholine in the rat neuromuscular junction. J. Neurochem. 85: 206–213. 2003.

Nishimaru H., Restrepo C.E., Ryge J., Yanagawa Y., Kiehn O. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc. Natl. Acad. Sci. U. S. A. 102(14): 5245–5249. 2005.

Petrov K., Malomouzh A., Kovyazina I., Krejci E., Nikitashina A., Proskurina S. Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-D-aspartate receptor activation. Eur. J. Neurosci. 37:181-189. 2013.

Garcia N., Santafé M., Salon I., Lanuza M., Tomàs J. Expression of muscarinic acetylcholine receptors (M1-, M2-, M3- and M4-type) in the neuromuscular junction of the newborn and adult rat. Histol. Histopathol. 20(3): 733-743. 2005.

Slutsky I., Silman I., Parnas I., Parnas H. Presynaptic M(2) muscarinic receptors are involved in controlling the kinetics of ACh release at the frog neuromuscular junction. J. Physiol. 536(Pt 3):717-25. 2001.

Oliveira L., Timóteo M., Correia-de-Sá P. Modulation by adenosine of both muscarinic M1-facilitation and M2-inhibition of [3H]-acetylcholine release from the rat motor nerve terminals. Eur. J. Neurosci. 15(11): 1728-1736. 2002.

Oliveira L., Timóteo M., Correia-de-Sá P. Negative crosstalk between M1 and M2 muscarinic autoreceptors involves endogenous adenosine activating A1 receptors at the rat motor endplate. Neurosci. Lett. 459(3): 127-131. 2009.

Dudel J. The time course of transmitter release in mouse motor nerve terminals is differentially affected by activation of muscarinic M1 or M2 receptors. Eur. J. Neurosci. 26 (8): 2160-2168. 2007

Newman Z., Malik P., Wu T.-Y., Ochoa C., Watsa N., Lindgren C, Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction. Eur. J. Neurosci. 25(6): 1619–1630. 2007.

Newman E.A., Frambach D.A., Odette L.L. et al., Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science. 225(4667): 1174-1175. 1984.

Heredia D. J., Feng C.Y., Hennig G.W., Renden R.B., Gould T.W. Activity-induced Ca2+ signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y1 receptors and regulates muscle fatigue. Elife. 7: e30839. 2018.

Rochon D., Rousse I., Robitaille R. Synapse-glia interactions at the mammalian neuromuscular junction. J. Neurosci. 21(11):3819-3829. 2001.

Chen Z-L., Yu W-M., Strickland S. Peripheral Regeneration. Annu. Rev. Neurosci. 30:209–233. 2007.

Jessen K.R., Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia. 56(14):1552-1565. 2008.

Hall E.D., Oostveen J.A., Gurney M.E. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23: 249–256. 1998.

McGeer P.L., McGeer E.G., Kawamata T., Yamada T., Akiyama H. Reactions of the immune system in chronic degenerative neurological diseases. Can. J. Neurol. Sci. 18 (3 Suppl.):376-379. 1991.

Cheng C., Zochodne D.W. In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers. Neuroscience.115 (1):321-329. 2002.

Georgiou J., Robitaille R., Trimble W.S., Charlton M.P. Synaptic regulation of glial protein expression in vivo. Neuron. 12 (2):443-455. 1994.

Triolo D., Dina G., Lorenzetti I., Malaguti M., Morana P., Del Carro U., Comi G., Messing A., Quattrini A., Previtali S.C. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J. Cell. Sci. 119 (Pt 19):3981-3993. 2006.

Duregotti E., Negro S., Scorzeto M., Zornetta I., Dickinson B.C., Chang C.J., Montecucco C., Rigoni M., Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc. Natl. Acad. Sci. U. S. A. 112(5):E497-505. 2015.

Dave V., Gordon, C. W., and McCarthy, K. D. Cerebral type 2 astroglia are heterogeneous with respect to their ability to respond to neuroligands linked to calcium mobilization. Glia. 4:440-447. 1991.

Pearce B., Cambray-Deakin M., Morrow C., Grimble J., Murphy S. Activation of muscarinic and of a-adrenergic receptors on astrocytes results in the accumulation of inositol phosphates. J. Neurochem. 45:1534-1540. 1985.

Todd K., Darabid H., Robitaille R. Perisynaptic glia discriminate patterns of motor nerve activity and influence plasticity at the neuromuscular junction. J. Neurosci. 30(35):11870-11882. 2010.

Ko C.P., Robitaille R. Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells. Cold Spring Harb. Perspect. Biol. 7(10):a020503. 2015.

Kang H., Tian L., Thompson W. Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J. Neurocytol. 32(5-8):975-985. 2003.

Madison R.D., Sofroniew M.V., Robinson G.A. Schwann cell influence on motor neuron regeneration accuracy. Neuroscience. 163(1):213-221. 2009.

Magill C.K., Tong A., Kawamura D., Hayashi A., Hunter D.A., Parsadanian A., Mackinnon S.E., Myckatyn T.M. Reinnervation of the tibialis anterior following sciatic nerve crush injury: a confocal microscopic study in transgenic mice. Exp. Neurol. 207(1):64-74. 2007.

Darabid H., St-Pierre-See A., Robitaille R. Purinergic-Dependent Glial Regulation of Synaptic Plasticity of Competing Terminals and Synapse Elimination at the Neuromuscular Junction. Cell Rep. 25(8): 2070-2082. 2018.

Heredia D.J., Feng C.Y., Hennig G.W., Renden R.B., Gould T.W. Activity-induced Ca2+ signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y1 receptors and regulates muscle fatigue. eLife. 7:e30839. 2018.

Lohof A.M., Ip N.Y., Poo M.M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature. 363(6427):350-353. 1993.

Robitaille R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron. 4:847-855. 1998.

Petrov K.A., Girard E., Nikitashina A.D., Colasante C., Bernard V., Nurullin L., Leroy J., Samigullin D., Colak O., Nikolsky E., Plaud B., Krejci E. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase. J. Neurosci. 34(36):11870-11883. 2014.

Ruff R.L., Endplate contributions to the safety factor for neuromuscular transmission. Muscle Nerve. 44(6):854-861. 2011.

Leader H., Wolfe A.D., Chiang P.K. Gordon R. K. Pyridophens: binary pyridostigmine−aprophen prodrugs with differential inhibition of acetylcholinesterase, butyrylcholinesterase, and muscarinic receptors. J. Med. Chem. 45: 902-910. 2002.

Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati A., Donaldson D., Goto J., O'Regan J.P., Deng H.X. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362(6415):59-62. 1993.

Gurney M.E., Pu H., Chiu A.Y., Dal Canto M.C., Polchow C.Y., Alexander D.D., Caliendo J., Hentati A., Kwon Y.W., Deng H.X. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 264(5166):1772-1775. 1994.

Clement A.M., Nguyen M.D., Roberts E.A., Garcia M.L., Boillée S., Rule M., McMahon A.P., Doucette W., Siwek D., Ferrante R.J., Brown R.H. Jr, Julien J.P., Goldstein L.S., Cleveland D.W. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science. 302(5642):113-117.

Lobsiger C.S., Boillee S., McAlonis-Downes M., Khan A.M., Feltri M.L., Yamanaka K., Cleveland D.W. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc. Natl. Acad. Sci. U. S. A. 106(11):4465-4470. 2009.

Wang L., Pytel P., Feltri M.L., Wrabetz L., Roos R.P. Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice. Neurobiol. Dis. 48(1): 52-57. 2012.

De Winter F., Vo T., Stam F.J., Wisman L.A., Bär P.R., Niclou S.P., van Muiswinkel F.L., Verhaagen J. The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol. Cell Neurosci. 32(1-2):102-117. 2006.

Keller A.F., Gravel M., Kriz J. Live imaging of amyotrophic lateral sclerosis pathogenesis: disease onset is characterized by marked induction of GFAP in Schwann cells. Glia. 57(10):1130-1142. 2009.

Carrasco D.I., Bichler E.K., Seburn K.L., Pinter M.J. Nerve terminal degeneration is independent of muscle fiber genotype in SOD1 mice. PLoS One. 5(3):e9802. 2010.

Carrasco D.I., Seburn K.L., Pinter M.J. Altered terminal Schwann cell morphology precedes denervation in SOD1 mice. Exp. Neurol. 275:172-181. 2016.

Carrasco D.I., Bahr B.A., Seburn K.L., Pinter M.J. Abnormal response of distal Schwann cells to denervation in a mouse model of motor neuron disease. Exp. Neurol. 278:116-126. 2016.

Arbour D., Tremblay E., Martineau É., Julien J.P., Robitaille R. Early and persistent abnormal decoding by glial cells at the neuromuscular junction in an ALS model. J. Neurosci. 35(2):688-706. 2015.

Bruneteau G., Bauché S., Gonzalez de Aguilar J.L., Brochier G., Mandjee N., Tanguy M.L., Hussain G., Behin A., Khiami F., Sariali E., Hell-Remy C., Salachas F., Pradat P.F., Lacomblez L., Nicole S., Fontaine B., Fardeau M., Loeffler J.P., Meininger V., Fournier E., Koenig J., Hantaï D. Endplate denervation correlates with Nogo-A muscle expression in amyotrophic lateral sclerosis patients. Ann. Clin. Transl. Neurol. 2(4):362-372. 2015.

Arbour D., Vande Velde C., Robitaille R. New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction. J. Physiol. 595(3):647-661. 2017.

Lasiene J., Komine O., Fujimori-Tonou N., Powers B., Endo F., Watanabe S., Shijie J., Ravits J., Horner P., Misawa H., Yamanaka K. Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons. Acta Neuropathol. Commun. 4:15. 2016

Maselli A., Ng J., Anderson A., Cagney O., Arredondo J., Williams C., Wessel B., Abdel-Hamid H., Wollmann L. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J. Med. Genetics. 46(3):203–208. 2009.

Nicole S., Chaouch A., Torbergsen T., Bauche S., de Bruyckere E., Fontenille J., Horn A., van Ghelue M., Loseth S., Issop Y., Cox D., Muller S., Evangelista T., Stalberg E., Ioos C., Barois A., Brochier G., Sternberg D., Fournier E., Hantai D., Abicht A., Dusl M., Laval H., Griffin H., Eymard B., Lochmuller H. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 137:2429–2443. 2014.

D’Amico A., Mercuri E., Tiziano D., Bertini E. Spinal muscular atrophy. Orphanet J. Rare Dis. 6(1): 71. 2011.

Murray M., Beauvais A., Bhanot K., Kothary R. Defects in neuromuscular junction remodelling in the Smn(2B/−) mouse model of spinal muscular atrophy. Neurobiol. Dis. 49: 57-67. 2013.

Halstead K., O’Hanlon M., Humphreys D., Morrison B., Morgan P., Todd J., Plomp J., Willison J. Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain. 127(Pt 9):2109–2123. 2004.

O’Hanlon M., Plomp J., Chakrabarti M., Morrison I., Wagner R., Goodyear S., Yin X., Trapp D., Conner J., Molenaar C., Stewart S., Rowan G., Willison J. Anti-GQ1b ganglioside antibodies mediate complement-dependent destruction of the motor nerve terminal. Brain. 124 (Pt 5):893–906. 2001.

Wirguin I., Ifergane G., Almog Y., Lieberman D., Bersudsky M., Herishanu O. Presynaptic neuromuscular transmission block in Guillain-Barre syndrome associated with anti-GQ1b antibodies. Neuromuscul. Disord. 12(3):292–293. 2002.

Neve A., Trüb J., Saxena S., Schümperli D. Central and peripheral defects in motor units of the diaphragm of spinal muscular atrophy mice. Mol. Cell Neurosci. 70:30-41. 2016.

Murray L.M., Beauvais A., Bhanot K., Kothary R. Defects in neuromuscular junction remodelling in the Smn(2B/-) mouse model of spinal muscular atrophy. Neurobiol. Dis. 49:57-67. 2013.

Halstead S.K., Humphreys P.D., Goodfellow J.A., Wagner E.R., Smith R.A., Willison H.J. Complement inhibition abrogates nerve terminal injury in Miller Fisher syndrome. Ann. Neurol. 58(2):203-210. 2005.

Personius K.E., Sawyer R.P. Terminal Schwann cell structure is altered in diaphragm of mdx mice. Muscle Nerve. 32(5):656-663. 2005.

Marques M.J., Pereira E.C., Minatel E., Neto H.S. Nerve-terminal and Schwann-cell response after nerve injury in the absence of nitric oxide. Muscle Nerve. 34(2):225-231. 2006.

Feng G., Krejci E., Molgo J., Cunningham J.M., Massoulié J., Sanes J.R. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J. Cell Biol. 144(6):1349-1360. 1999.

Maselli R.A., Ng J.J., Anderson J.A., Cagney O., Arredondo J., Williams C., Wessel H.B., Abdel-Hamid H., Wollmann R.L. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J. Med. Genet. 46(3):203-208. 2009.

Nicole S., Chaouch A., Torbergsen T., Bauché S., de Bruyckere E., Fontenille M.J., Horn M.A., van Ghelue M., Løseth S., Issop Y., Cox D., Müller J.S., Evangelista T., Stålberg E., Ioos C., Barois A., Brochier G., Sternberg D., Fournier E., Hantaï D., Abicht A., Dusl M., Laval S.H., Griffin H., Eymard B., Lochmüller H. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 137(Pt 9):2429-2443. 2014.