ТРАНСПОРТЕРЫ ГЛУТАМАТА (ЕААТ-1–3) КАК ФАКТОР ПАТОГЕНЕЗА И ПЕРСПЕКТИВНАЯ ТЕРАПЕВТИЧЕСКАЯ МИШЕНЬ ПРИ ЭПИЛЕПСИИ
PDF

Ключевые слова

эпилепсия
транспортер возбуждающих аминокислот
цефтриаксон
модель эпилепсии
глутамат

Как цитировать

Смоленский, И. В., Овсепян, С. В., & Зайцев , А. В. (2019). ТРАНСПОРТЕРЫ ГЛУТАМАТА (ЕААТ-1–3) КАК ФАКТОР ПАТОГЕНЕЗА И ПЕРСПЕКТИВНАЯ ТЕРАПЕВТИЧЕСКАЯ МИШЕНЬ ПРИ ЭПИЛЕПСИИ . Российский физиологический журнал им. И. М. Сеченова, 105(9), 1096–1112. https://doi.org/10.1134/S0869813919090097

Аннотация

Эпилепсия является одним из самых распространенных неврологических заболеваний, однако судорожные припадки не удается полностью купировать у 30% больных, что требует разработки новых фармакологических подходов к ее лечению. При некоторых патологических состояниях, в том числе фармакорезистентных формах эпилепсии механизмы удаления глутамата из синаптической щели могут нарушаться, поэтому один из перспективных подходов при таких патологических состояниях может быть связан с воздействием на переносчики глутамата. В данном обзоре анализируются современные данные об изменениях экспрессии белков-транспортеров возбуждающих аминокислот (ЕААТ, excitatory amino acid transporters) при эпилепсии у человека, а также в моделях судорожных состояний и эпилепсии у животных. Рассматриваются способы воздействия на экспрессию и активность транспортеров как перспективную терапевтическую мишень при лечении судорожных состояний, особое внимание уделено анализу применения антибиотика цефтриаксона, усиливающему экспрессию и активность EAAT-2.

https://doi.org/10.1134/S0869813919090097
PDF

Литература

Meyer A. C., Dua T., Ma J., Saxena S., Birbeck G. Global disparities in the epilepsy treatment gap: a systematic review. Bull. World Health Organ. 88(4): 260-266. 2010.

Moshe S. L., Perucca E., Ryvlin P., Tomson T. Epilepsy: new advances. Lancet. 385(9971): 884-898. 2015.

Loscher W., Klitgaard H., Twyman R. E., Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov. 12(10): 757-776. 2013.

Barker-Haliski M., White H. S. Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb. Perspect. Med. 5(8): a022863. 2015.

Traynelis S. F., Wollmuth L. P., McBain C. J., Menniti F. S., Vance K. M., Ogden K. K., Hansen K. B., Yuan H., Myers S. J., Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62(3): 405-496. 2010.

Albrecht J., Zielinska M. Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem. Res. 42(6): 1724-1734. 2017.

Eid T., Gruenbaum S. E., Dhaher R., Lee T. W., Zhou Y., Danbolt N. C. The Glutamate-Glutamine Cycle in Epilepsy. Adv. Neurobiol. 13: 351-400. 2016.

Bouvier M., Szatkowski M., Amato A., Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature. 360(6403): 471-474. 1992.

Benveniste H., Drejer J., Schousboe A., Diemer N. H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43(5): 1369-1374. 1984.

Lehmann A., Isacsson H., Hamberger A. Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J. Neurochem. 40(5): 1314-1320. 1983.

During M. J., Spencer D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 341(8861): 1607-1610. 1993.

Cavus I., Kasoff W. S., Cassaday M. P., Jacob R., Gueorguieva R., Sherwin R. S., Krystal J. H., Spencer D. D., Abi-Saab W. M. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann. Neurol. 57(2): 226-235. 2005.

Millan M. H., Chapman A. G., Meldrum B. S. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epil. Res. 14(2): 139-148. 1993.

Szyndler J., Maciejak P., Turzynska D., Sobolewska A., Lehner M., Taracha E., Walkowiak J., Skorzewska A., Wislowska-Stanek A., Hamed A., Bidzinski A., Plaznik A. Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats. Neurosci. Lett. 439(3): 245-249. 2008.

Pena F., Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience. 101(3): 547-561. 2000.

Kanamori K., Ross B. D. Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Res. 1371: 180-191. 2011.

Meurs A., Clinckers R., Ebinger G., Michotte Y., Smolders I. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin. Epil. Res. 78(1): 50-59. 2008.

Smolders I., Khan G. M., Manil J., Ebinger G., Michotte Y. NMDA receptor‐mediated pilocarpine‐induced seizures: characterization in freely moving rats by microdialysis. Br. J. Pharmacol. 121(6): 1171-1179. 1997.

During M., Spencer D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 341(8861): 1607-1610. 1993.

Thomas P., Phillips J., Delanty N., O’Connor W. Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus. Epil. Res. 54(1): 73-79. 2003.

Urbanska E. M., Czuczwar S. J., Kleinrok Z., Turski W. A. Excitatory amino acids in epilepsy. Restor. Neurol. and Neurosci. 13(1, 2): 25-39. 1998.

Pajarillo E., Rizor A., Lee J., Aschner M., Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019.

Tanaka K. Cloning and expression of a glutamate transporter from mouse brain. Neurosci. Lett. 159(1): 183-186. 1993.

Pines G., Danbolt N. C., Bjørås M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm-Mathisen J., Seeberg E., Kanner B. I. Cloning and expression of a rat brain L-glutamate transporter. Nature. 360(6403): 464. 1992.

Kanai Y., Hediger M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 360(6403): 467. 1992.

Fairman W., Vandenberg R., Arriza J., Kavanaught M., Amara S. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 375(6532): 599. 1995.

Arriza J. L., Eliasof S., Kavanaugh M. P., Amara S. G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Nat. Acad. Sci. USA. 94(8): 4155-4160. 1997.

Lehre K. P., Levy L. M., Ottersen O. P., Storm-Mathisen J., Danbolt N. C. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15(3): 1835-1853. 1995.

Karki P., Lee E., Aschner M. Manganese neurotoxicity: a focus on glutamate transporters. Ann. Occup. Environ. Med. 25(1): 4. 2013.

Parkin G. M., Udawela M., Gibbons A., Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J. Psychiatry. 8(2): 51-63. 2018.

Schmitt A., Asan E., Lesch K. P., Kugler P. A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience. 109(1): 45-61. 2002.

Chen W., Mahadomrongkul V., Berger U. V., Bassan M., DeSilva T., Tanaka K., Irwin N., Aoki C., Rosenberg P. A. The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J. Neurosci. 24(5): 1136-1148. 2004.

Rothstein J. D., Martin L., Levey A. I., Dykes-Hoberg M., Jin L., Wu D., Nash N., Kuncl R. W. Localization of neuronal and glial glutamate transporters. Neuron. 13(3): 713-725. 1994.

Bjorn-Yoshimoto W. E., Underhill S. M. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem. Int. 98: 4-18. 2016.

Nagao S., Kwak S., Kanazawa I. EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience. 78(4): 929-933. 1997.

Tanaka K., Watase K., Manabe T., Yamada K., Watanabe M., Takahashi K., Iwama H., Nishikawa T., Ichihara N., Kikuchi T. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 276(5319): 1699-1702. 1997.

Kim K., Lee S. G., Kegelman T. P., Su Z. Z., Das S. K., Dash R., Dasgupta S., Barral P. M., Hedvat M., Diaz P., Reed J. C., Stebbins J. L., Pellecchia M., Sarkar D., Fisher P. B. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J. Cell. Physiol. 226(10): 2484-2493. 2011.

Mookherjee P., Green P. S., Watson G., Marques M. A., Tanaka K., Meeker K. D., Meabon J. S., Li N., Zhu P., Olson V. G. GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J. Alzheimer's Dis. 26(3): 447-455. 2011.

Holmseth S., Dehnes Y., Huang Y. H., Follin-Arbelet V. V., Grutle N. J., Mylonakou M. N., Plachez C., Zhou Y., Furness D. N., Bergles D. E., Lehre K. P., Danbolt N. C. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J. Neurosci. 32(17): 6000-6013. 2012.

Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., Kanai Y., Hediger M. A., Wang Y., Schielke J. P., Welty D. F. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 16(3): 675-686. 1996.

Sullivan R., Rauen T., Fischer F., Wiessner M., Grewer C., Bicho A., Pow D. V. Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia. 45(2): 155-169. 2004.

Utsunomiya-Tate N., Endou H., Kanai Y. Tissue specific variants of glutamate transporter GLT-1. FEBS Lett. 416(3): 312-316. 1997.

Vallejo-Illarramendi A., Domercq M., Matute C. A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake. J. Neurochem. 95(2): 341-348. 2005.

Jin X. P., Peng J. B., Huang F., Zhu Y. N., Fei J., Guo L. H. A mRNA molecule encoding truncated excitatory amino acid carrier 1 (EAAC1) protein (EAAC2) is transcribed from an independent promoter but not an alternative splicing event. Cell Res. 12(3-4): 257-262. 2002.

Jen J. C., Wan J., Palos T. P., Howard B. D., Baloh R. W. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 65(4): 529-534. 2005.

Poletti S., Riberto M., Vai B., Ghiglino D., Lorenzi C., Vitali A., Brioschi S., Locatelli C., Serretti A., Colombo C., Benedetti F. A Glutamate Transporter EAAT1 Gene Variant Influences Amygdala Functional Connectivity in Bipolar Disorder. J. Mol. Neurosci. 65(4): 536-545. 2018.

Reyes N., Ginter C., Boudker O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature. 462(7275): 880-885. 2009.

Kanai Y., Hediger M. A. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur. J. Pharmacol. 479(1-3): 237-247. 2003.

Zerangue N., Kavanaugh M. P. Flux coupling in a neuronal glutamate transporter. Nature. 383(6601): 634-637. 1996.

Grewer C., Rauen T. Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J. Membr. Biol. 203(1): 1-20. 2005.

Jabaudon D., Scanziani M., Gahwiler B. H., Gerber U. Acute decrease in net glutamate uptake during energy deprivation. Proc. Nat. Acad. Sci. USA. 97(10): 5610-5615. 2000.

Billups B., Attwell D. Modulation of non-vesicular glutamate release by pH. Nature. 379(6561): 171-174. 1996.

Tessler S., Danbolt N. C., Faull R. L., Storm-Mathisen J., Emson P. C. Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience. 88(4): 1083-1091. 1999.

Eid T., Thomas M. J., Spencer D. D., Runden-Pran E., Lai J. C., Malthankar G. V., Kim J. H., Danbolt N. C., Ottersen O. P., de Lanerolle N. C. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet. 363(9402): 28-37. 2004.

Bjornsen L. P., Eid T., Holmseth S., Danbolt N. C., Spencer D. D., de Lanerolle N. C. Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol. Dis. 25(2): 319-330. 2007.

Mathern G. W., Mendoza D., Lozada A., Pretorius J. K., Dehnes Y., Danbolt N. C., Nelson N., Leite J. P., Chimelli L., Born D. E., Sakamoto A. C., Assirati J. A., Fried I., Peacock W. J., Ojemann G. A., Adelson P. D. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology. 52(3): 453-472. 1999.

Proper E. A., Hoogland G., Kappen S. M., Jansen G. H., Rensen M. G., Schrama L. H., van Veelen C. W., van Rijen P. C., van Nieuwenhuizen O., Gispen W. H., de Graan P. N. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain. 125(Pt 1): 32-43. 2002.

Hoogland G., van Oort R. J., Proper E. A., Jansen G. H., van Rijen P. C., van Veelen C. W., van Nieuwenhuizen O., Troost D., de Graan P. N. Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients. Epil. Res. 59(2-3): 75-82. 2004.

Vasilev D. S., Tumanova N. L., Kim K. K., Lavrentyeva V. V., Lukomskaya N. Y., Zhuravin I. A., Magazanik L. G., Zaitsev A. V. Transient Morphological Alterations in the Hippocampus After Pentylenetetrazole-Induced Seizures in Rats. Neurochem. Res. 93(3):454-465. 2018.

Zaitsev A. V., Kim K. K., Vasilev D. S., Lukomskaya N. Y., Lavrentyeva V. V., Tumanova N. L., Zhuravin I. A., Magazanik L. G. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J. Neurosci. Res. 93(3): 454-465. 2015.

Curia G., Longo D., Biagini G., Jones R. S., Avoli M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods. 172(2): 143-157. 2008.

Kalemenev S. V., Zubareva O. E., Frolova E. V., Sizov V. V., Lavrentyeva V. V., Lukomskaya N. Y., Kim K., Zaitsev A. V., Magazanik L. G. Impairment of exploratory behavior and spatial memory in adolescent rats in lithium-pilocarpine model of temporal lobe epilepsy. Dokl. Biol. Sci. 463: 175-177. 2015.

Wolf D. C., Bueno-Junior L. S., Lopes-Aguiar C., Do Val Da Silva R. A., Kandratavicius L., Leite J. P. The frequency of spontaneous seizures in rats correlates with alterations in sensorimotor gating, spatial working memory, and parvalbumin expression throughout limbic regions. Neuroscience. 312: 86-98. 2016.

Suleymanova E. M., Gulyaev M. V., Abbasova K. R. Structural alterations in the rat brain and behavioral impairment after status epilepticus: An MRI study. Neuroscience. 315: 79-90. 2016.

Lopes M. W., Lopes S. C., Santos D. B., Costa A. P., Goncalves F. M., de Mello N., Prediger R. D., Farina M., Walz R., Leal R. B. Time course evaluation of behavioral impairments in the pilocarpine model of epilepsy. Epil. Behav. 55: 92-100. 2016.

Detour J., Schroeder H., Desor D., Nehlig A. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia. 46(4): 499-508. 2005.

Chen S., Zeng X., Zong W., Wang X., Chen L., Zhou L., Li C., Huang Q., Huang X., Zeng G., Hu K., Ouyang D. S. Aucubin Alleviates Seizures Activity in Li-Pilocarpine-Induced Epileptic Mice: Involvement of Inhibition of Neuroinflammation and Regulation of Neurotransmission. Neurochem. Res. 44(2): 472-484. 2019.

Zubareva O., Kovalenko A., Karyakin V., Kalemenev S., Lavrent’eva V., Magazanik L., Zaitsev A. Changes in the Expression of Genes of the Glutamate Transporter and Subunits of the NMDA and AMPA Receptors in the Rat Amygdala in the Lithium–Pilocarpine Model of Epilepsy. Neurochem. J. 12(3): 222-227. 2018.

Zubareva O. E., Kovalenko A. A., Kalemenev S. V., Schwarz A. P., Karyakin V. B., Zaitsev A. V. Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats. Neurosci. Lett. 686: 94-100. 2018.

Lopes M. W., Soares F. M., de Mello N., Nunes J. C., Cajado A. G., de Brito D., de Cordova F. M., da Cunha R. M., Walz R., Leal R. B. Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy. Exp. Brain Res. 226(2): 153-163. 2013.

Sarfi M., Elahdadi Salmani M., Goudarzi I., Lashkar Boluki T., Abrari K. Evaluating the role of astrocytes on beta-estradiol effect on seizures of Pilocarpine epileptic model. Eur. J. Pharmacol. 797: 32-38. 2017.

Crino P. B., Jin H., Shumate M. D., Robinson M. B., Coulter D. A., Brooks-Kayal A. R. Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia. 43(3): 211-218. 2002.

Sakurai M., Kurokawa H., Shimada A., Nakamura K., Miyata H., Morita T. Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat. Neuropathology. 35(1): 1-9. 2015.

Hubbard J. A., Szu J. I., Yonan J. M., Binder D. K. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp. Neurol. 283(Pt A): 85-96. 2016.

Nonaka M., Kohmura E., Yamashita T., Shimada S., Tanaka K., Yoshimine T., Tohyama M., Hayakawa T. Increased transcription of glutamate-aspartate transporter (GLAST/GluT-1) mRNA following kainic acid-induced limbic seizure. Brain Res. Mol. Brain Res. 55(1): 54-60. 1998.

Takahashi D. K., Vargas J. R., Wilcox K. S. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol. Dis. 40(3): 573-585. 2010.

Samuelsson C., Kumlien E., Flink R., Lindholm D., Ronne-Engstrom E. Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy. Neurosci. Lett. 289(3): 185-188. 2000.

Ueda Y., Doi T., Tokumaru J., Yokoyama H., Nakajima A., Mitsuyama Y., Ohya-Nishiguchi H., Kamada H., Willmore L. J. Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid. J. Neurochem. 76(3): 892-900. 2001.

Yu Y. H., Xie W., Zhao Y. Y. [Effects of heterotherapy for homopathy on the metabolism path of glutamate in the pentylenetetrazol-kindled seizure rats' hippocampus]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 33(1): 95-99. 2013.

Ingram E. M., Wiseman J. W., Tessler S., Emson P. C. Reduction of glial glutamate transporters in the parietal cortex and hippocampus of the EL mouse. J. Neurochem. 79(3): 564-675. 2001.

Ghijsen W. E., da Silva Aresta Belo A. I., Zuiderwijk M., Lopez da Silva F. H. Compensatory change in EAAC1 glutamate transporter in rat hippocampus CA1 region during kindling epileptogenesis. Neurosci. Lett. 276(3): 157-610. 1999.

Журавлева З. Н., Журавлев Г. И., Самохина Е. И. Изменение взаимодействий между астроцитарными отростками и синаптическими окончаниями при генерации эпилептиформной активности. Рос. физиол. журн. им. И. М. Сеченова, 105(6): 707–715. 2019. [Zhuravleva Z. N., Zhuravlev G. I., Samokhina E. I. Changes in interactions between astrocytic processes and synaptic endings during the generation of epileptiform activity. Russ. J. Physiol. 105(6).707-715. 2019.(in Russ.)].

Plata A., Lebedeva A., Denisov P., Nosova O., Postnikova T. Y., Pimashkin A., Brazhe A., Zaitsev A. V., Rusakov D. A., Semyanov A. Astrocytic Atrophy Following Status Epilepticus Parallels Reduced Ca(2+) Activity and Impaired Synaptic Plasticity in the Rat Hippocampus. Front. Mol. Neurosci. 11: 215. 2018.

Murphy-Royal C., Dupuis J. P., Varela J. A., Panatier A., Pinson B., Baufreton J., Groc L., Oliet S. H. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat. Neurosci. 18(2): 219-226. 2015.

Watase K., Hashimoto K., Kano M., Yamada K., Watanabe M., Inoue Y., Okuyama S., Sakagawa T., Ogawa S., Kawashima N., Hori S., Takimoto M., Wada K., Tanaka K. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur. J. Neurosci. 10(3): 976-988. 1998.

Watanabe T., Morimoto K., Hirao T., Suwaki H., Watase K., Tanaka K. Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res. 845(1): 92-96. 1999.

Nagatomo K., Ueda Y., Doi T., Takaki M., Tsuru N. Functional role of GABA transporters for kindling development in GLAST KO mice. Neurosci. Res. 57(2): 319-321. 2007.

Tsuru N., Ueda Y., Doi T. Amygdaloid kindling in glutamate transporter (GLAST) knockout mice. Epilepsia. 43(8): 805-811. 2002.

Tanaka K., Watase K., Manabe T., Yamada K., Watanabe M., Takahashi K., Iwama H., Nishikawa T., Ichihara N., Kikuchi T., Okuyama S., Kawashima N., Hori S., Takimoto M., Wada K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 276(5319): 1699-1702. 1997.

Petr G. T., Sun Y., Frederick N. M., Zhou Y., Dhamne S. C., Hameed M. Q., Miranda C., Bedoya E. A., Fischer K. D., Armsen W., Wang J., Danbolt N. C., Rotenberg A., Aoki C. J., Rosenberg P. A. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J. Neurosci. 35(13): 5187-5201. 2015.

Kong Q., Takahashi K., Schulte D., Stouffer N., Lin Y., Lin C. L. Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol. Dis. 47(2): 145-154. 2012.

Peghini P., Janzen J., Stoffel W. Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J. 16(13): 3822-3832. 1997.

Sepkuty J. P., Cohen A. S., Eccles C., Rafiq A., Behar K., Ganel R., Coulter D. A., Rothstein J. D. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J. Neurosci. 22(15): 6372-6379. 2002.

Vandenberg R. J., Ryan R. M. Mechanisms of glutamate transport. Physiol. Rev. 93(4): 1621-1657. 2013.

Fontana A. C. Current approaches to enhance glutamate transporter function and expression. J. Neurochem. 134(6): 982-1007. 2015.

Rothstein J. D., Patel S., Regan M. R., Haenggeli C., Huang Y. H., Bergles D. E., Jin L., Dykes Hoberg M., Vidensky S., Chung D. S., Toan S. V., Bruijn L. I., Su Z. Z., Gupta P., Fisher P. B. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 433(7021): 73-77. 2005.

Lee E., Sidoryk-Wegrzynowicz M., Yin Z., Webb A., Son D. S., Aschner M. Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia. 60(7): 1024-1036. 2012.

Lee S. G., Su Z. Z., Emdad L., Gupta P., Sarkar D., Borjabad A., Volsky D. J., Fisher P. B. Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J. Biol. Chem. 283(19): 13116-13123. 2008.

Uyanikgil Y., Ozkeskek K., Cavusoglu T., Solmaz V., Tumer M. K., Erbas O. Positive effects of ceftriaxone on pentylenetetrazol-induced convulsion model in rats. Int. J. Neurosci. 126(1): 70-75. 2016.

Hussein A. M., Ghalwash M., Magdy K., Abulseoud O. A. Beta Lactams Antibiotic Ceftriaxone Modulates Seizures, Oxidative Stress and Connexin 43 Expression in Hippocampus of Pentylenetetrazole Kindled Rats. J. Epil. Res. 6(1): 8-15. 2016.

Jelenkovic A. V., Jovanovic M. D., Stanimirovic D. D., Bokonjic D. D., Ocic G. G., Boskovic B. S. Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp. Biol. Med. (Maywood). 233(11): 1389-1394. 2008.

Soni N., Koushal P., Reddy B. V., Deshmukh R., Kumar P. Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epil. Behav. 48: 4-14. 2015.

Goodrich G. S., Kabakov A. Y., Hameed M. Q., Dhamne S. C., Rosenberg P. A., Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J. Neurotrauma. 30(16): 1434-1441. 2013.

Hameed M. Q., Hsieh T. H., Morales-Quezada L., Lee H. H. C., Damar U., MacMullin P. C., Hensch T. K., Rotenberg A. Ceftriaxone Treatment Preserves Cortical Inhibitory Interneuron Function via Transient Salvage of GLT-1 in a Rat Traumatic Brain Injury Model. Cereb. Cortex. 1-13. 2018.

Lai P. C., Huang Y. T., Wu C. C., Lai C. J., Wang P. J., Chiu T. H. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats. J. Biomed. Sci. 18: 69. 2011.

Thone-Reineke C., Neumann C., Namsolleck P., Schmerbach K., Krikov M., Schefe J. H., Lucht K., Hortnagl H., Godes M., Muller S., Rumschussel K., Funke-Kaiser H., Villringer A., Steckelings U. M., Unger T. The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J. Hypertens. 26(12): 2426-2435. 2008.

Hu Y. Y., Xu J., Zhang M., Wang D., Li L., Li W. B. Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats. J. Neurochem. 132(2): 194-205. 2015.

Krzyzanowska W., Pomierny B., Budziszewska B., Filip M., Pera J. N-Acetylcysteine and Ceftriaxone as Preconditioning Strategies in Focal Brain Ischemia: Influence on Glutamate Transporters Expression. Neurotox. Res. 29(4): 539-550. 2016.

Loewen J. L., Albertini G., Dahle E. J., Sato H., Smolders I. J., Massie A., Wilcox K. S. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp. Neurol. 318: 50-60. 2019.

Rao P. S., Goodwani S., Bell R. L., Wei Y., Boddu S. H., Sari Y. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats. Neuroscience. 295: 164-174. 2015.

Nie H., Zhang H., Weng H. R. Minocycline prevents impaired glial glutamate uptake in the spinal sensory synapses of neuropathic rats. Neuroscience. 170(3): 901-912. 2010.

Hassel B., Iversen E. G., Gjerstad L., Tauboll E. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate. J. Neurochem. 77(5): 1285-1292. 2001.

Mao Q. X., Yang T. D. Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats. Brain Res. Bull. 81(4-5): 424-427. 2010.

Zelenaia O., Schlag B. D., Gochenauer G. E., Ganel R., Song W., Beesley J. S., Grinspan J. B., Rothstein J. D., Robinson M. B. Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol. Pharmacol. 57(4): 667-678. 2000.

Tian G., Lai L., Guo H., Lin Y., Butchbach M. E., Chang Y., Lin C. L. Translational control of glial glutamate transporter EAAT2 expression. J. Biol. Chem. 282(3): 1727-1737. 2007.

Wen Z. H., Wu G. J., Chang Y. C., Wang J. J., Wong C. S. Dexamethasone modulates the development of morphine tolerance and expression of glutamate transporters in rats. Neuroscience. 133(3): 807-817. 2005.

Karki P., Smith K., Johnson J., Jr., Lee E. Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-alpha in estrogen-induced upregulation of glutamate transporters in astrocytes. Mol. Cell. Endocrinol. 389(1-2): 58-64. 2014.

Fang Q., Hu W. W., Wang X. F., Yang Y., Lou G. D., Jin M. M., Yan H. J., Zeng W. Z., Shen Y., Zhang S. H., Xu T. L., Chen Z. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology. 77: 156-166. 2014.

Ganel R., Ho T., Maragakis N. J., Jackson M., Steiner J. P., Rothstein J. D. Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol. Dis. 21(3): 556-567. 2006.

Mortensen O. V., Liberato J. L., Coutinho-Netto J., Dos Santos W. F., Fontana A. C. Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains. J. Neurochem. 133(2): 199-210. 2015.

Fontana A. C., de Oliveira Beleboni R., Wojewodzic M. W., Ferreira Dos Santos W., Coutinho-Netto J., Grutle N. J., Watts S. D., Danbolt N. C., Amara S. G. Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol. Pharmacol. 72(5): 1228-1237. 2007.

Fumagalli E., Funicello M., Rauen T., Gobbi M., Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur. J. Pharmacol. 578(2-3): 171-176. 2008.

Kong Q., Chang L. C., Takahashi K., Liu Q., Schulte D. A., Lai L., Ibabao B., Lin Y., Stouffer N., Das Mukhopadhyay C., Xing X., Seyb K. I., Cuny G. D., Glicksman M. A., Lin C. L. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J. Clin. Invest. 124(3): 1255-1267. 2014.