НЕЙРОГЕНЕТИЧЕСКИЕ ТЕХНОЛОГИИ ИССЛЕДОВАНИЯ МЕХАНИЗМОВ ХРАНЕНИЯ ПАМЯТИ
PDF

Ключевые слова

нейрон
память
синаптическая пластичность
эпигенетика
экспрессия генов
редактирование эпигенома

Как цитировать

Балабан, П. М., & Бородинова , А. А. (2019). НЕЙРОГЕНЕТИЧЕСКИЕ ТЕХНОЛОГИИ ИССЛЕДОВАНИЯ МЕХАНИЗМОВ ХРАНЕНИЯ ПАМЯТИ. Российский физиологический журнал им. И. М. Сеченова, 105(11), 1392–1405. https://doi.org/10.1134/S0869813919110025

Аннотация

Статья посвящена анализу возможных подходов к исследованию механизмов хранения памяти на уровне долговременных перестроек уровня экспрессии генов, специфически вовлеченных в формирование и хранение памяти. В настоящее время известно всего несколько генов кандидатов хранения памяти. Разработки последних двух-трех лет с использованием генетических конструкций, направленно меняющих работу некоторых генов, демонстрируют возможность управлять работой нервной сети в физиологических и патологических условиях. Комплексные локус-специфические перестройки хроматина в регуляторных областях генов пластичности в ответ на различные внешние стимулы (обучение), в конечном итоге, могут предопределять длительные изменения экспрессии этих генов и, возможно, представляют собой один из путей регуляции материальных субстратов памяти. Тонкая модуляция работы генома при формировании памяти достигается, в том числе, посредством локус-специфических изменений эпигенома (посттрансляционные модификации гистонов и метилирование ДНК). Дальнейшая разработка подходов для селективной эпигенетической регуляции работы некоторых генов пластичности (редактирование эпигенома) может представлять большой интерес для исследования физиологических функций в нервной системе и коррекции поведенческих реакций, памяти и различных патологических состояний.

https://doi.org/10.1134/S0869813919110025
PDF

Литература

Chen S., Cai D., Pearce K., Sun P.Y., Roberts A.C., Glanzman D.L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. Elife. 3:e03896. 2014.

Triesch J., Vo A.D., Hafner A.S. Competition for synaptic building blocks shapes synaptic plasticity. Elife. 7. pii: e37836. 2018.

Bédécarrats A., Chen S., Pearce K., Cai D., Glanzman D.L. RNA from Trained Aplysia Can Induce an Epigenetic Engram for Long-Term Sensitization in Untrained Aplysia. eNeuro. 5(3). pii: ENEURO.0038-18.2018. 2018.

McGaugh J.L. Memory-a century of consolidation. Science. 287(5451):248-251. 2000.

Weiser N.E., Kim J.K. Multigenerational Regulation of the Caenorhabditis elegans Chromatin Landscape by Germline Small RNAs. Annu. Rev. Genet. doi: 10.1146/annurev-genet-112618-043505. 2019

Eliezer Y., Deshe N., Hoch L., Iwanir S., Pritz C.O., Zaslaver A. A Memory Circuit for Coping with Impending Adversity. Curr. Biol. 29(10):1573-1583.e4. 2019.

Katz M., Shaham S. Learning and Memory: Mind over Matter in C. elegans. Curr. Biol. 29(10):R365-R367. 2019.

Miller C.A., Sweatt J.D. Covalent modification of DNA regulates memory formation. Neuron. 53(6):857-869. 2007.

Van Lint C., Emiliani S., Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5(4-5):245-253. 1996.

Goodman R.H., Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14(13):1553-1577. 2000.

Jarome T.J., Lubin F.D. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol. Learn. Mem. 115:116-127. 2014.

Penney J., Tsai L.H. Histone deacetylases in memory and cognition. Sci. Signal. 7(355):re12. 2014.

Kim S., Kaang B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 49(1):e281. 2017.

Levenson J.M., O'Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279(39):40545-40559. 2004.

Gräff J., Woldemichael B.T., Berchtold D., Dewarrat G., Mansuy I.M. Dynamic histone marks in the hippocampus and cortex facilitate memory consolidation. Nat. Commun. 3:991. 2012.

Ranjan V., Singh S., Siddiqui S.A., Tripathi S., Khan M.Y., Prakash A. Differential Histone Acetylation in Sub-Regions of Bed Nucleus of the Stria Terminalis Underlies Fear Consolidation and Extinction. Psychiatry Investig. 14(3):350-359. 2017.

Siddiqui S.A., Singh S., Ranjan V., Ugale R., Saha S., Prakash A. Enhanced Histone Acetylation in the Infralimbic Prefrontal Cortex is Associated with Fear Extinction. Cell Mol. Neurobiol. 37(7):1287-1301. 2017.

Vecsey C.G., Hawk J.D., Lattal K.M., Stein J.M., Fabian S.A., Attner M.A., Cabrera S.M., McDonough C.B., Brindle P.K., Abel T., Wood M.A. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27 (23):6128-6140. 2007.

Stefanko D.P., Barrett R.M., Ly A.R., Reolon G.K., Wood M.A. Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. USA. 106 (23):9447-9452. 2009.

Hawk J.D., Florian C., Abel T. Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn Mem. 18(6):367-370. 2011.

Villain H., Florian C., Roullet P. HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci. Rep. 6:27015. 2016.

Korzus E., Rosenfeld M.G., Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron. 42(6):961-972. 2004.

Guan J.S., Haggarty S.J., Giacometti E., Dannenberg J.H., Joseph N., Gao J., Nieland T.J., Zhou Y., Wang X., Mazitschek R., Bradner J.E., DePinho R.A., Jaenisch R., Tsai L.H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 459 (7243):55-60. 2009.

Bahari-Javan S., Maddalena A., Kerimoglu C., Wittnam J., Held T., Bähr M., Burkhardt S., Delalle I., Kügler S., Fischer A., Sananbenesi F. HDAC1 regulates fear extinction in mice. J. Neurosci. 32 (15):5062-5073. 2012.

Bannister A.J., Kouzarides T. Reversing histone methylation. Nature. 436 (7054):1103-1106. 2005.

Gupta S., Kim S.Y., Artis S., Molfese D.L., Schumacher A., Sweatt J.D., Paylor R.E., Lubin F.D. Histone methylation regulates memory formation. J. Neurosci. 30 (10):3589-3599. 2010.

Gupta-Agarwal S., Franklin A.V., Deramus T., Wheelock M., Davis R.L., McMahon L.L., Lubin F.D. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J. Neurosci. 32 (16):5440-5453. 2012.

Snigdha S., Prieto G.A., Petrosyan A., Loertscher B.M., Dieskau A.P., Overman L.E., Cotman C.W. H3K9me3 Inhibition Improves Memory, Promotes Spine Formation, and Increases BDNF Levels in the Aged Hippocampus. J. Neurosci. 36 (12):3611-3622. 2016.

Neelamegam R., Ricq E.L., Malvaez M., Patnaik D., Norton S., Carlin S.M., Hill I.T., Wood M.A., Haggarty S.J., Hooker J.M. Brain-penetrant LSD1 inhibitors can block memory consolidation. ACS Chem. Neurosci. 3(2):120-128. 2012.

Wang J., Telese F., Tan Y., Li W., Jin C., He X., Basnet H., Ma Q., Merkurjev D., Zhu X., Liu Z., Zhang J., Ohgi K., Taylor H., White R.R., Tazearslan C., Suh Y., Macfarlan T.S., Pfaff S.L., Rosenfeld M.G. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat. Neurosci. 18(9):1256-1264. 2015.

Castillo-Aguilera O., Depreux P., Halby L., Arimondo P.B., Goossens L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules. 7(1). pii: E3. 2017.

Sacktor T.C. Memory maintenance by PKMζ--an evolutionary perspective. Mol. Brain. 5:31. 2012.

Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 7(1):a021741. 2014.

Mansuy I.M., Winder D.G., Moallem T.M., Osman M., Mayford M., Hawkins R.D., Kandel E.R. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron. 21(2):257-265. 1998.

Winder D.G., Mansuy I.M., Osman M., Moallem T.M., Kandel E.R. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell. 92(1):25-37. 1998.

Genoux D., Haditsch U., Knobloch M., Michalon A., Storm D., Mansuy I.M. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature. 418 (6901):970-975. 2002.

Sacktor T.C. How does PKMζ maintain long-term memory? Nat. Rev. Neurosci. 12(1):9-15. 2011.

Wang S., Sheng T., Ren S., Tian T., Lu W. Distinct Roles of PKCι/λ and PKMζ in the Initiation and Maintenance of Hippocampal Long-Term Potentiation and Memory. Cell Rep. 16(7):1954-1961. 2016.

Balaban P.M. Molecular mechanisms of memory modification. Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova. 67(2):131–140. 2017.

Borodinova A.A., Zuzina A.B., Balaban P.M. Role of Atypical Protein Kinases in Maintenance of Long-Term Memory and Synaptic Plasticity. Biochemistry (Mosc). 82(3):243-256. 2017.

Pastalkova E., Serrano P. Pinkhasova D. Wallace E., Fenton A.A., Sacktor T.C. Storage of spatial information by the maintenance mechanism of LTP. Science. 313 (5790):1141-1144. 2006.

Serrano P., Friedman E.L., Kenney J., Taubenfeld S.M., Zimmerman J.M., Hanna J., Alberini C., Kelley A.E., Maren S., Rudy J.W., Yin J.C., Sacktor T.C., Fenton A.A. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol. 6(12):2698-2706. 2008.

Chen C., Meng S.Q., Xue Y.X., Han Y., Sun C.Y., Deng J.H., Chen N., Bao Y.P., Zhang F.L., Cao L.L., Zhu W.G., Shi J., Song W.H., Lu L. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci. Rep. 6:22096. 2016.

Shema R., Sacktor T.C., Dudai Y. Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science. 317 (5840):951-953. 2007.

Shema R., Hazvi S., Sacktor T.C., Dudai Y. Boundary conditions for the maintenance of memory by PKMzeta in neocortex. Learn Mem. 16(2):122-128. 2009.

Shema R., Haramati S., Ron S., Hazvi S., Chen A., Sacktor T.C., Dudai Y. Enhancement of consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex. Science. 331 (6021):1207-1210. 2011.

Ling D.S., Benardo L.S., Serrano P.A., Blace N., Kelly M.T., Crary J.F., Sacktor T.C. Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat. Neurosci. 5(4):295-296. 2002.

Hernandez A.I., Blace N., Crary J.F., Serrano P.A., Leitges M., Libien J.M., Weinstein G., Tcherapanov A., Sacktor T.C. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J. Biol. Chem. 278(41):40305-40316. 2003.

Serrano P., Yao Y., Sacktor T.C. Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation. J. Neurosci. 25 (8):1979-1984. 2005.

Tsokas P., Hsieh C., Yao Y., Lesburguères E., Wallace E.J.C., Tcherepanov A., Jothianandan D., Hartley B.R., Pan L., Rivard B., Farese R.V., Sajan M.P., Bergold P.J., Hernández A.I., Cottrell J.E., Shouval H.Z., Fenton A.A., Sacktor T.C. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice. Elife. 5. pii: e14846. 2016.

Borodinova A.A., Salozhin S.V. Diversity of proBDNF and mBDNF functions in the central nervous system. Zh Vyssh Nerv Deiat Im I P Pavlova. 66(1):3-23. 2016.

Koshibu K., Gräff J., Mansuy I.M. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience. 173:30-6. 2011.

Borodinova A.A., Kuznetsova M.A., Alekseeva V.S., Balaban P.M. Histone acetylation determines transcription of atypical protein kinases in rat neurons. Sci. Rep. 9 (1):4332. 2019.

Nguyen P.V., Abel T., Kandel E.R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 265 (5175):1104-1107. 1994.

Igaz L.M., Vianna M.R., Medina J.H., Izquierdo I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci. 22 (15):6781-6789. 2002.

Lefer D., Perisse E., Hourcade B., Sandoz J., Devaud J.M. Two waves of transcription are required for long-term memory in the honeybee. Learn Mem. 20 (1):29-33. 2012.

Tyssowski K.M., DeStefino N.R., Cho J.H., Dunn C.J., Poston R.G., Carty C.E., Jones R.D., Chang S.M., Romeo P., Wurzelmann M.K., Ward J.M., Andermann M.L., Saha R.N., Dudek S.M., Gray J.M. Different Neuronal Activity Patterns Induce Different Gene Expression Programs. Neuron. 98 (3):530-546.e11. 2018.

Savell K.E., Bach S.V., Zipperly M.E., Revanna J.S., Goska N.A., Tuscher J.J., Duke C.G., Sultan F.A., Burke J.N., Williams D., Ianov L., Day J.J. A Neuron-Optimized CRISPR/dCas9 Activation System for Robust and Specific Gene Regulation. eNeuro. 6(1). pii: ENEURO.0495-18.2019. 2019.

Zheng Y., Shen W., Zhang J., Yang B., Liu Y.N., Qi H., Yu X., Lu S.Y., Chen Y., Xu Y.Z., Li Y., Gage F.H., Mi S., Yao J. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat. Neurosci. 21 (3):447-454. 2018.

Haenfler JM., Skariah G., Rodriguez C.M., Monteiro da Rocha A., Parent J.M., Smith G.D., Todd P.K. Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells. Front Mol. Neurosci. 11:282. 2018.

Ho S.M., Hartley B.J., Flaherty E., Rajarajan P., Abdelaal R., Obiorah I., Barretto N., Muhammad H., Phatnani H.P., Akbarian S., Brennand K.J. Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. Stem Cell Reports. 9 (2):615-628. 2017.

Baumann V., Wiesbeck M., Breunig C.T., Braun J.M., Köferle A., Ninkovic J., Götz M., Stricker S.H. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat. Commun. 10 (1):2119. 2019.

Merschbaecher K., Haettig J., Mueller U. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation. PLoS One. 7(9):e45131. 2012.

Beldjoud H., Barsegyan A., Roozendaal B. Noradrenergic activation of the basolateral amygdala enhances object recognition memory and induces chromatin remodeling in the insular cortex. Front Behav. Neurosci. 9:108. 2015.

Hilton I.B., D'Ippolito A.M., Vockley C.M., Thakore P.I., Crawford G.E., Reddy T.E., Gersbach C.A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33(5):510-517. 2015.

Joo J.Y., Schaukowitch K., Farbiak L., Kilaru G., Kim T.K. Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat. Neurosci. 19(1):75-83. 2016.

Chen L.F., Lin Y.T., Gallegos D.A., Hazlett M.F., Gómez-Schiavon M., Yang M.G., Kalmeta B., Zhou A.S., Holtzman L., Gersbach C.A., Grandl J., Buchler N.E., West A.E. Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics of Neuronal Activity-Inducible Genes. Cell Rep. 26(5):1174-1188.e5. 2019.

Fukushima H.S., Takeda H., Nakamura R. Targeted in vivo epigenome editing of H3K27me3. Epigenetics Chromatin. 12 (1):17. 2019.

Kuscu C., Mammadov R., Czikora A., Unlu H., Tufan T., Fischer N.L., Arslan S., Bekiranov S., Kanemaki M., Adli M. Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells. J. Mol. Biol. 431 (1):111-121. 2019.

O'Geen H., Bates S.L., Carter S.S., Nisson K.A., Halmai J., Fink K.D., Rhie S.K., Farnham P.J., Segal D.J. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin. 12(1):26. 2019.

Kantor B., Tagliafierro L., Gu J., Zamora M.E., Ilich E., Grenier C., Huang Z.Y., Murphy S., Chiba-Falek O. Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Mol. Ther. 26 (11):2638-2649. 2018.

Liu X.S., Wu H., Krzisch M., Wu X., Graef J., Muffat J., Hnisz D., Li C.H., Yuan B., Xu C., Li Y., Vershkov D., Cacace A., Young R.A., Jaenisch R. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell. 172 (5):979-992.e6. 2018.

Noack F., Pataskar A., Schneider M., Buchholz F., Tiwari V.K., Calegari F. Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis. Life Sci. Alliance. 2 (2). pii: e201900331. 2019.

Nihongaki Y., Furuhata Y., Otabe T., Hasegawa S., Yoshimoto K., Sato M. CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods. 14(10):963-966. 2017.

Shao J., Wang M., Yu G., Zhu S., Yu Y., Heng B.C., Wu J., Ye H. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl. Acad. Sci. USA. 115(29):E6722-E6730. 2018.