ВКЛАД КАЛЬЦИЕВЫХ КАНАЛОВ L-ТИПА В СЕКРЕЦИЮ АЦЕТИЛХОЛИНА В НЕРВНО-МЫШЕЧНЫХ СОЕДИНЕНИЯХ ЛЯГУШКИ И МЫШИ ПРИ АКТИВНЫХ И ИНАКТИВИРОВАННЫХ ПОТЕНЦИАЛ-ЗАВИСИМЫХ КАЛИЕВЫХ КАНАЛАХ
PDF

Ключевые слова

нервно-мышечный синапс
калиевый канал
кальциевый канал
ацетилхолин

Как цитировать

Ценцевицкий, А. Н., Хузахметова, В. Ф., Хазиев, Э. Ф., & Ковязина, И. В. (2019). ВКЛАД КАЛЬЦИЕВЫХ КАНАЛОВ L-ТИПА В СЕКРЕЦИЮ АЦЕТИЛХОЛИНА В НЕРВНО-МЫШЕЧНЫХ СОЕДИНЕНИЯХ ЛЯГУШКИ И МЫШИ ПРИ АКТИВНЫХ И ИНАКТИВИРОВАННЫХ ПОТЕНЦИАЛ-ЗАВИСИМЫХ КАЛИЕВЫХ КАНАЛАХ. Российский физиологический журнал им. И. М. Сеченова, 105(10), 1271–1282. https://doi.org/10.1134/S0869813919100108

Аннотация

Исследование посвящено изучению вклада Са2+-каналов L-типа в вызванную секрецию ацетилхолина из двигательных нервных окончаний лягушки и мыши при активных и инактивированных потенциал-зависимых К+-каналах. Оценивали эффекты специфического блокатора Са2+-каналов L-типа нитрендипина на квантовый состав токов концевой пластинки и временной ход секреции квантов ацетилхолина в интактных препаратах и после предварительной блокады потенциал-активируемых К+-каналов 4-аминопиридином (4-АП) в условиях сниженного и физиологического уровня Са2+ в среде. Флуоресцентным методом измеряли кальциевый транзиент, отражающий интегральный вход Са2+ в нервное окончание, и осуществили компьютерное моделирование процессов, лежащих в основе экзоцитоза при наличии двух типов Са2+-каналов («N-» и «L-типов») и разной длительности потенциала действия нервного окончания.
https://doi.org/10.1134/S0869813919100108
PDF

Литература

Hong S.J, Chang C.C. Inhibition of acetylcholine release from mouse motor nerve by a P-type calcium channel blocker, omega-agatoxin IVA. J. Physiol. 482:283–290. 1995.

Meir A., Ginsburg S., Butkevich A., Kachalsky S.G., Kaiserman I., Ahdut R., Demirgoren S., Rahamimoff R. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol. Rev. 79(3):1019–1088. 1999.

Balezina O.P., Bogacheva P.O., Orlova T.Y. Effect of L-type calcium channel blockers on activity of newly formed synapses in mice. Bull. Exp. Biol. Med. 143(2):171–174. 2007.

Tsentsevitsky A.N., Vasin A.L., Bukharaeva E.A. Nikolsky E.E. Participation of different types of voltage-dependent calcium channels in evoked quantal transmitter release in frog neuromuscular junction. Dokl. Biol. Sci. 423:389–391. 2008.

Gaydukov A.E., Melnikova S.N., Balezina O.P. Facilitation of acetylcholine secretion in mouse motor synapses caused by calcium release from depots upon activation of L-type calcium channels. Bull. Exp. Biol. Med. 148(2):163–166. 2009.

Tarasova E.O., Miteva A.S., Gaydukov A.E., Balezina O.P. The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses. Biochemistry. Suppl. Series A. 9(4):318–328. 2015.

Tsentsevitsky A. N., Khuzakhmetova V. F., Vasin A. L., Samigullin D. V., Bukharaeva E. A. Calcium modulation of the kinetics of evoked quantum secretion in neuromuscular synapses of cold-and warm-blooded animals. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 9(4): 270-277. 2015.

Tsentsevitsky A.N., Samigullin D.V., Nurullin L.F., Khaziev E.F., Nikolsky E.E., Bukharaeva E.A. Frogs: genetic diversity, neural development and ecological implications. Ed. Lambert H. New York: NOVA Pupl. 2014.

Khuzakhmetova V.F., Nurullin L.F., Bukharaeva E.A., Nikolsky E.E. Involvement of dihydropyridine-sensitive calcium channels in high asynchrony of transmitter release in neuromuscular synapses of newborn rats. Dokl. Biol. Sci. 470(1):220–223. 2016.

Roberts W.M., Jacobs R.A., Hudspeth A.J. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10(11):3664–3684. 1990.

Robitaille R., Garcia M.L., Kaczorowski G.J., Charlton M.P. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron. 11(4):645–655. 1993.

Yazejian B., DiGregorio D.A., Vergara J.L., Poage R.E., Meriney S.D., Grinnell A.D. Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses. J. Neurosci. 17(9):2990–3001. 1997.

Robitaille R., Charlton M.P. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J. Neurosci. 12:297-305. 1992.

Urbano F.J., Depetris R.S., Uchitel O.D. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals. Pflugers Arch. 441(6):824–831. 2001.

Flink M.T., Atchison W.D. Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals. J. Pharmacol. Exp. Ther. 305(2):646–652. 2003.

Giovannini F., Sher E., Webster R., Boot J., Lang B. Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions. Br. J. Pharmacol. 136(8):1135–1145. 2002.

Allana T.N., Lin J-W. Effects of increasing Ca2+ channel-vesicle separation on facilitation at the crayfish inhibitory neuromuscular junction. Neuroscience. 154(4):1242–1254. 2008.

Hockerman G.H., Peterson B.Z., Johnson B.D., Catterall W.A. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol. 37:361-396. 1997.

Furukawa T., Yamakawa T., Midera T., Sagawa T., Mori Y., Nukada T. Selectivities of dihydropyridine derivatives in blocking Ca2+ channel subtypes expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 291:464-473. 1999.

Del Castillo J., Katz B. Quantal components of the end-plate potential. J. Physiol. 124:560–573. 1954.

Katz B., Miledi R. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B. Biol. Sci. 161:483–495. 1965.

Bennett M.R., Gibson W.G., Robinson J. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates. Biophys J. 73(4):1815–1829. 1997.

Bennett M.R., Farnell L., Gibson W.G. The probability of quantal secretion near a single calcium channel of an active zone. Biophys J. 78(5):2201–2221. 2000.

Shahrezaei V., Delaney K.R. Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release. J. Neurophysiol. 94(3):1912–1919. 2005.

Shahrezaei V., Cao A., Delaney K.R. Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. J. Neurosci. 26(51):13240–13249. 2006.

Rosato Siri M.D., Uchitel O.D. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions. J. Physiol. 514(2):533—540. 1999.

Muller D. Potentiation by 4-aminopyridine of quantal acetylcholine release at the Torpedo nerve-electroplaque junction. J. Physiol. 379:479–493. 1986.

Li L., Li D.P., Chen S.R., Chen J., Hu H., Pan H.L. Potentiation of high voltage-activated calcium channels by 4-aminopyridine depends on subunit composition. Mol. Pharmacol. 86(6):760–772. 2014.

Bukharaeva E.A., Samigullin D., Nikolsky E.E., Magazanik L.G. Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. J. Neurochem. 100(4):939–949. 2007.

Giniatullin R.A., Khazipov R.N. End plate currents with a physiological level of quantal secretion and after potentiation of the mediator release by 4-aminopyridine. Neirofiziologiia. 23(1):48-56. 1991.

Provan S.D., Miyamoto M.D. Effect of the putative cognitive enhancer, linopirdine (DuP 996), on quantal parameters of acetylcholine release at the frog neuromuscular junction. Br. J. Pharmacol. 111(4):1103-1110. 1994.

Ng F., Lee D.C., Schrumpf L.A., Mazurek M.E., Lee Lo V., Gill S.K., Maselli R.A. Effect of 3,4-diaminopyridine at the murine neuromuscular junction. Muscle Nerve. 55(2):223-231. 2017.

Khaziev E.F., Samigullin D.V., Tsentsevitsky A.N., Bukharaeva E.A., Nikolsky E.E. ATP reduces the entry of calcium ions into the nerve ending by blocking L-type calcium channels. Acta Naturae. 10(2):93-96. 2018.

Lozavio A., Muchnik S. Spontaneous acetylcholine release in mammalian neuromuscular junctions. Am. J. Physiol. 273(6):1835-1841. 1997.

Zuccotti A.1., Clementi S., Reinbothe T., Torrente A., Vandael D.H., Pirone A. Structural and functional differences between L-type calcium channels: crucial issues for future selective targeting. Trends Pharmacol. Sci. 32(6):366–375. 2011.

Furukawa T. Types of voltage-gated calcium channels: molecular and electrophysiological views. Curr. Hypertens. Rev. 9(3):170–181. 2013.

Zamponi G.W., Striessnig J., Koschak A., Dolphin A.C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67(4):821–870. 2015.

Luo F., Südhof T.C. Synaptotagmin-7-mediated asynchronous release boosts high-fidelity synchronous transmission at a central synapse. Neuron. 94(4):826-839. 2017.

Rozov A., Bolshakov A.P., Valiullina-Rakhmatullina F. The ever-growing puzzle of asynchronous release. Front. Cell. Neurosci. 13:28. 2019.

Sun J., Pang Z., Qin D., Fahim A.T., Adachi R., Südhof T.C. A two Ca2+-sensor model for neurotransmitter release in a central synapse. Nature. 450(7170):676–682. 2007.

Pagani R., Song M., McEnery M., Qin N., Tsien R.W., Toro L., Stefani E., Uchitel O.D. Differential expression of alpha 1 and beta subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse. Neuroscience. 123(1):75–85. 2004.

Kirkpatrick K., Bourque C.W. Dual role for calcium in the control of spike duration in rat supraoptic neuroendocrine cells. Neurosci. Lett. 133(2):271–274. 1991.

Sabatini B.L., Regehr W.G. Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. J. Neurosci. 17(10):3425–3435. 1997.