КАИНОВАЯ МОДЕЛЬ ВИСОЧНОЙ ЭПИЛЕПСИИ И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ИЗУЧЕНИЯ РОЛИ ЭНДОКАННАБИНОИДНОЙ СИСТЕМЫ В НЕЙРОПРОТЕКЦИИ
PDF

Ключевые слова

Каиновая кислота
каинатный рецептор
судорожная активность
эпилептический статус
эпилептогенез
электрическая активность мозга
нейродегенерация
эндоканнабиноидная система

Как цитировать

Шубина, Л. В., Мальков, А. Е., & Кичигина, В. Ф. (2019). КАИНОВАЯ МОДЕЛЬ ВИСОЧНОЙ ЭПИЛЕПСИИ И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ИЗУЧЕНИЯ РОЛИ ЭНДОКАННАБИНОИДНОЙ СИСТЕМЫ В НЕЙРОПРОТЕКЦИИ. Российский физиологический журнал им. И. М. Сеченова, 105(6), 680–693. https://doi.org/10.1134/S0869813919060062

Аннотация

Одной из широко используемых моделей височной эпилепсии у животных является эпилептический статус, вызываемый каиновой кислотой. Нейропатологические и электроэнцефалографические изменения, вызываемые каинатом, достаточно точно воспроизводят нарушения, наблюдаемые у людей. В обзоре описаны механизмы действия каиновой кислоты, а также острые и хронические нарушения после ее введения экспериментальным животным. Особый акцент сделан на собственные данные, полученные с помощью данной модели, включая роль активации эндоканнабиноидной системы при патологическом воздействии каиновой кислоты.

https://doi.org/10.1134/S0869813919060062
PDF

Литература

Ben-Ari Y., Cossart R. Kainate, a double agent that generates seizures: Two decades of progress.Trends Neurosci. 23:580-587.2000.

Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 14(2): 375–403. 1985.

Ben-Ari Y., Lagowska J., Tremblay E., Le Gal La Salle G. A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Res. 163(1): 176–179. 1979.

Smith D.H., Okiyama K., Thomas M.J., Claussen B., McIntosh T.K. Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J. Neurotrauma. 8(4): 259–269. 1991.

Majak K., Pitkänen A. Do seizures cause irreversible cognitive damage? Evidence from animal studies. Epilepsy Behav. 5(SUPPL. 1) 2004.

Shinozaki H., Konishi S. Actions of several anthelmintics and insecticides on rat cortical neurones. Brain Res. 24(2): 368–371. 1970.

Patel S., Meldrum B.S., Collins J.F. Distribution of [3H]kainic acid and binding sites in the rat brain: in vivo and in vitro receptor autoradiography. Neurosci. Lett. 70(3): 301–307. 1986.

Rogawski M.A., Gryder D., Castaneda D., Yonekawa W., Banks M.K., Lia H. GluR5 kainate receptors, seizures, and the amygdala. Ann. N. Y. Acad. Sci. 985: 150–162. 2003.

Jin X.T., Smith Y. Localization and functions of kainate receptors in the basal ganglia. Advanc. Exp. Med. Biol. 717: 27-37. 2011.

Wisden W., Seeburg P.H. A complex mosaic of high-affinity kainate receptors in rat brain. J. Neurosci. 13(8): 3582–3598. 1993.

Bloss E.B., Hunter R.G. Hippocampal kainate receptors. Vitamins and Hormones. 82:167 - 184. 2010.

Bahn S., Volk B., Wisden W. Kainate receptor gene expression in the developing rat brain. J. Neurosci. 14(9): 5525–5547. 1994.

Fisahn A., Contractor A., Traub R.D., Buhl E.H., Heinemann S.F., McBain C.J. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J. Neurosci. 24(43): 9658–68. 2004.

Mulle C., Sailer A., Pérez-Otaño I., Dickinson-Anson H., Castillo P.E., Bureau I. Altered synaptic physiology and reduced susceptibility to kainate- induced secures in GluR6-deficient mice. Nature. 392(6676): 601–605. 1998.

Vincent P., Mulle C. Kainate receptors in epilepsy and excitotoxicity. Neuroscience.158: 309 - 323. 2009.

Li J.-M., Zeng Y.-J., Peng F., Li L., Yang T.-H., Hong Z.. Aberrant glutamate receptor 5 expression in temporal lobe epilepsy lesions. Brain Res. 1311: 166–74. 2010.

Bernard C., Hirsch J.C., Ben-Ari Y. Excitation and inhibition in temporal lobe epilepsy: a close encounter. Adv. Neurol. 79: 821–828. 1999.

Curia G., Longo D., Biagini G., Jones R.S.G., Avoli M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods. 172(2): 143–157. 2008.

Bragin A., Engel J., Wilson C.L., Vizentin E., Mathern G.W. Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia. 40(9): 1210–1221. 1999.

Bragin A., Wilson C.L., Engel J. Chronic Epileptogenesis Requires Development of a Network of Pathologically Interconnected Neuron Clusters: A Hypothesis. Epilepsia. 41(s6): S144–S152. 2000.

Bragin A., Wilson C.L., Almajano J., Mody I., Engel J. High-frequency oscillations after status epilepticus: Epileptogenesis and seizure genesis. Epilepsia. 45(9): 1017–1023. 2004.

Bragin A., Azizyan A., Almajano J., Engel J. The Cause of the Imbalance in the Neuronal Network Leading to Seizure Activity Can Be Predicted by the Electrographic Pattern of the Seizure Onset. J. Neurosci. 29(11): 3660–3671. 2009.

Carriero G., Arcieri S., Cattalini A., Corsi L., Gnatkovsky V., De Curtis M. A guinea pig model of mesial temporal lobe epilepsy following nonconvulsive status epilepticus induced by unilateral intrahippocampal injection of kainic acid. Epilepsia. 53(11): 1917–1927. 2012.

Raedt R., Van Dycke A., Van Melkebeke D., De Smedt T., Claeys P., Wyckhuys T., et al. Seizures in the intrahippocampal kainic acid epilepsy model: Characterization using long-term video-EEG monitoring in the rat. Acta Neurol. Scand. 119(5): 293–303. 2009.

Shubina L., Aliev R., Kitchigina V. Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res. 111: 33–44. 2015.

Racine R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32(3): 281–294. 1972.

French E.D., Aldinio C., Schwarcz R. Intrahippocampal kainic acid, seizures and local neuronal degeneration: Relationships assessed in unanesthetized rats. Neuroscience. 7(10): 2525–2536. 1982.

Medvedev A., MacKenzie L., Hiscock J.J., Willoughby J.O. Kainic acid induces distinct types of epileptiform discharge with differential involvement of hippocampus and neocortex. Brain Res. Bull. 52(2): 89–98. 2000.

Lévesque M., Langlois J.M.P., Lema P., Courtemanche R., Bilodeau G.A., Carmant L. Synchronized gamma oscillations (30-50 Hz) in the amygdalo-hippocampal network in relation with seizure propagation and severity. Neurobiol. Dis. 35(2): 209–218. 2009.

Ben-Ari Y., Tremblay E., Riche D., Ghilini G., Naquet R. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience. 6(7): 1361–1391. 1981.

Drexel M., Preidt A.P., Sperk G. Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology. 63(5): 806–817. 2012.

White A., Williams P.A., Hellier J.L., Clark S., Dudek F.E., Staley K.J. EEG spike activity precedes epilepsy after kainate-induced status epilepticus. Epilepsia. 51(3): 371–383. 2010.

Riban V., Bouilleret V., Pham-Lê B.T., Fritschy J.-M., Marescaux C., Depaulis A. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience. 112: 101–111. 2002.

Lado F.A. Chronic bilateral stimulation of the anterior thalamus of kainate-treated rats increases seizure frequency. Epilepsia. 47(1): 27–32. 2006.

Williams P.A., White A.M., Clark S., Ferraro D.J., Swiercz W., Staley K.J. Development of spontaneous recurrent seizures after kainate- induced status epilepticus. J. Neurosci. 29(7): 2103–2112. 2009.

Hellier J.L., Patrylo P.R., Buckmaster P.S., Dudek F.E. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: Assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 31(1): 73–84. 1998.

Leite J.P., Babb T.L., Pretorius J.K., Kuhlman P.A., Yeoman K.M., Mathern G.W. Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. Epilepsy Res. 26: 219–231. 1996.

Shubina L., Aliev R., Kitchigina V. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs. Brain Res. 1661: 1–14. 2017.

Arabadzisz D., Antal K., Parpan F., Emri Z., Fritschy J.M. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus. Exp. Neurol. 194(1): 76–90. 2005.

Dugladze T., Vida I., Tort A.B., Gross A., Otahal J., Heinemann U.. Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proc. Natl. Acad. Sci. 104(44): 17530–17535. 2007.

Gordon R.Y., Shubina L.V., Kapralova M.V., Pershina E.V., Khutsyan S.S., Arkhipov V.I. Peculiarities of neurodegeneration of hippocampus fields after the action of kainic acid in rats. Cell Tissue Biol. 9(2): 141 - 148. 2015.

Bragin A., Azizyan A., Almajano J., Wilson C.L., Engel J. Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia. 46(10): 1592–1598. 2005.

Ashwood T.J., Wheal H. V. Loss of inhibition in the CA1 region of the kainic acid lesioned hippocampus is not associated with changes in postsynaptic responses to GABA. Brain Res. 367(1–2): 390–394. 1986.

Ashwood T.J., Lancaster B., Wheal H. V. Intracellular electrophysiology of CA1 pyramidal neurones in slices of the kainic acid lesioned hippocampus of the rat. Exp. Brain Res. 62(1): 189–198. 1986.

Cornish S.M., Wheal H. V. Long-term loss of paired pulse inhibition in the kainic acid-lesioned hippocampus of the rat. Neuroscience. 28(3): 563–571. 1989.

Meier C.L., Obenaus A., Dudek F.E. Persistent hyperexcitability in isolated hippocampal CA1 of kainate-lesioned rats. J. Neurophysiol. 68(6): 2120–2127. 1992.

Franck J.E., Schwartzkroin P.A. Do kainate-lesioned hippocampi become epileptogenic? Brain Res. 329(1–2): 309–313. 1985.

Malkov A.E., Popova I.Y. Functional changes in the septal GABAergic system of animals with a model of temporal lobe epilepsy. Gen. Physiol. Biophys. 30(3): 310–320. 2011.

Mal’kov A.E., Karavaev E.N., Popova I.Y., Kichigina V.F. Changes in oscillatory activity of neurons in the medial septal area in animals with a model of chronic temporal epilepsy. Neurosci. Behav. Physiol. 38(9): 995–999. 2008.

Malkov A.E., Popova I.Y. GABAergic Modulation of Oscillatory Activity in the Medial Septal Area in Epilepsy. Neurosci. Behav. Physiol. 42(9): 1055–1059. 2012.

Colom L. V., García-Hernández A., Castañeda M.T., Perez-Cordova M.G., Garrido-Sanabria E.R. Septo-Hippocampal Networks in Chronically Epileptic Rats: Potential Antiepileptic Effects of Theta Rhythm Generation. J. Neurophysiol. 95(6): 3645–3653. 2006.

Vinogradova O.S. Expression, control, and probable functional significance of the neuronal theta-rhythm. Progr. Neurobiol. 45:523 - 583. 1995.

Lancaster B., Wheal H. V. Chronic failure of inhibition of the CA1 area of the hippocampus following kainic acid lesions of the CA3/4 area. Brain Res. 295(2): 317–324. 1984.

Malkov A.E., Shubina L. V, Kitchigina V.F. Effects of Endocannabinoid-Related Compounds on the Activity of Septal and Hippocampal Neurons in a Model of Kainic Neurotoxicity: Study Ex Vivo. Opera Med. Physiol. 4(1): 23–34. 2018.

Carta M., Fièvre S., Gorlewicz A., Mulle C. Kainate receptors in the hippocampus. Eur. J. Neurosci. 39(11): 1835–1844. 2014.

Nadler J.V., Perry B.W., Cotmon C.W. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature. 271(5646): 676–677. 1978.

Ben-Ari Y., Tremblay E., Ottersen O.P., Meldrum B.S. The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acid. Brain Res. 191(1): 79–97. 1980.

Buckmaster P.S., Dudek F.E. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J. Comp. Neurol. 385(3): 385–404. 1997.

Cronin J., Obenaus A., Houser C.R., Edward Dudek F. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res. 573(2): 305–310. 1992.

Wenzel H.J., Woolley C.S., Robbins C.A., Schwartzkroin P.A. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus. 10(3): 244–260. 2000.

Amaral D.G. A Golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol. 182(4 Pt 2): 851–914. 1978.

Best N., Mitchell J., Baimbridge K.G., Wheal H. V. Changes in parvalbumin-immunoreactive neurons in the rat hippocampus following a kainic acid lesion. Neurosci. Lett. 155(1): 1–6. 1993.

Best N., Mitchell J., Wheal H. V. Ultrastructure of parvalbumin-immunoreactive neurons in the CA1 area of the rat hippocampus following a kainic acid injection. Acta Neuropathol. 87(2): 187–195. 1994.

Morin F., Beaulieu C., Lacaille J.C. Selective loss of GABA neurons in area CA1 of the rat hippocampus after intraventricular kainate. Epilepsy Res. 32(3): 363–369. 1998.

Drexel M., Preidt A.P., Kirchmair E., Sperk G. Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures. Neuroscience. 189: 316–329. 2011.

Lacaille J.C., Mueller a L., Kunkel D.D., Schwartzkroin P. a. Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J. Neurosci. 7(7): 1979–1993. 1987.

Maccaferri G., McBain C.J. Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. Neuron. 15(1): 137–145. 1995.

Fritsch B., Qashu F., Figueiredo T.H., Aroniadou-Anderjaska V., Rogawski M.A., Braga M.F.M. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience. 163(1): 415–429. 2009.

Tuunanen J., Halonen T., Pitkänen A. Status epilepticus causes selective regional damage and loss of GABAergic neurons in the rat amygdaloid complex. Eur. J. Neurosci. 8(12): 2711–2725. 1996.

Sperk G., Lassmann H., Baran H., Seitelberger F., Hornykiewicz O. Kainic acid-induced seizures: Dose-relationship of behavioural, neurochemical and histopathological changes. Brain Res. 338(2): 289–295. 1985.

Katona I., Freund T.F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 14: 923–930. 2008.

Soltesz I., Alger B.E., Kano M., Lee S.H., Lovinger D.M., Ohno-Shosaku T., et al. Weeding out bad waves: Towards selective cannabinoid circuit control in epilepsy. Nat. Rev. Neurosci. (16): 264–277. 2015.

Kano M., Ohno-Shosaku T., Hashimotodani Y., Uchigashima M., Watanabe M. Endocannabinoid-Mediated Control of Synaptic Transmission. Physiol. Rev. 89: 309–380. 2009.

Alger B.E. Retrograde signaling in the regulation of synaptic transmission: Focus on endocannabinoids. Prog. Neurobiol. 68: 247–286. 2002.

Wilson R.I., Nicoll R.A. Endocannabinoid Signaling in the Brain. Science 296(5568): 678–682. 2002.

Wallace M.J., Wiley J.L., Martin B.R., DeLorenzo R.J. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 428(1): 51–57. 2001.

Wallace M.J., Blair R.E., Falenski K.W., Martin B.R., DeLorenzo R.J. The Endogenous Cannabinoid System Regulates Seizure Frequency and Duration in a Model of Temporal Lobe Epilepsy. J. Pharmacol. Exp. Ther. 307(1): 129–137. 2003.

Bahremand A., Shafaroodi H., Ghasemi M., Nasrabady S.E., Gholizadeh S., Dehpour A.R. The cannabinoid anticonvulsant effect on pentylenetetrazole-induced seizure is potentiated by ultra-low dose naltrexone in mice. Epilepsy Res. 81: 44–51. 2008.

Mason R., Cheer J.F. Cannabinoid receptor activation reverses kainate-induced synchronized population burst firing in rat hippocampus. Front. Integr. Neurosci. 3: 1–6. 2009.

Kozan R., Ayyildiz M., Agar E. The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia. 50(7): 1760–1767. 2009.

Citraro R., Russo E., Ngomba R.T., Nicoletti F., Scicchitano F., Whalley B.J. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res. 106: 74–82. 2013.

Rizzo V., Ferraro G., Carletti F., Lonobile G., Cannizzaro C., Sardo P. Evidences of cannabinoids-induced modulation of paroxysmal events in an experimental model of partial epilepsy in the rat. Neurosci. Lett. 462(2): 135–139. 2009.

Suleymanova E.M., Shangaraeva V.A., van Rijn C.M., Vinogradova L. V. The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats. Neuroscience. 334: 191–200. 2016.

Ma L., Wang L., Yang F., Meng X.-D., Wu C., Ma H. Disease-Modifying Effects of RHC80267 and JZL184 in a Pilocarpine Mouse Model of Temporal Lobe Epilepsy. CNS Neurosci. Ther. 20(10): 905–915. 2014.

Di Maio R., Cannon J.R., Greenamyre J.T. Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol. Dis. 73: 356–365. 2015.

Mikheeva I.B., Shubina L., Matveeva N., Pavlik L.L., Kitchigina V.F. Fatty acid amide hydrolase inhibitor URB597 may protect against kainic acid–induced damage to hippocampal neurons: Dependence on the degree of injury. Epilepsy Res. 137: 84 - 94. 2017.