ГЕНЕРАЦИЯ ТЕТА-РИТМА В СЕПТО-ГИППОКАМПАЛЬНОЙ СИСТЕМЕ И ЭПИЛЕПСИЯ
PDF

Ключевые слова

гиппокамп
септум
тета-осцилляции
синхронизация
нейронная активность
судороги

Как цитировать

Мысин, И. Е., & Попова, И. Ю. (2019). ГЕНЕРАЦИЯ ТЕТА-РИТМА В СЕПТО-ГИППОКАМПАЛЬНОЙ СИСТЕМЕ И ЭПИЛЕПСИЯ. Российский физиологический журнал им. И. М. Сеченова, 105(4), 401–415. https://doi.org/10.1134/S086981391904006X

Аннотация

Височная эпилепсия является одной из наиболее распространенных форм эпилепсии, характеризующейся склерозом гиппокампа и дефицитом памяти. Поскольку многочисленными исследованиями было показано, что гиппокампальный тета-ритм лежит в основе когнитивной деятельности мозга, большой интерес вызывает вопрос о том, как влияет развитие патологии на формирование тета-ритма. Пейсмекером гиппокампального тета-ритма является медиальная септальная область, которую часто вместе с гиппокампом рассматривают как единую септогиппокампальную систему. В обзоре систематизированы данные о функционировании септогиппокампальной системы на клеточном и системном уровнях в здоровом мозге и при развитии височной эпилепсии. Приводятся данные о вкладе разных клеточных популяций медиальной септальной области в формирование тета-ритма и об их роли в эпилептогенезе. Рассматриваются изменения межструктурных отношений в септо-гиппокампальной системе в эпилептическом мозге. Приведенные данные позволяют утверждать, что на физиологическом уровне одним из важнейших механизмов генерации судорог и развития хронической височной эпилепсии является нарушение септо-гиппокампальных отношений. Приводятся данныео том, что гиппокампальная сеть может генерировать физиологический тета-ритм и эпилептоподобные тета-осцилляции, в зависимости от условий и физиологического состояния системы. Обсуждается протекторная роль физиологического тета-ритма при эпилепсии. Понимание механизмов функционирования септо-гиппокампальной системы при развитии височной эпилепсии необходимо для развития новых подходов к лечению этой фармакорезистентной формы эпилепсии.

https://doi.org/10.1134/S086981391904006X
PDF

Литература

Виноградова О.С., Жадина С.Д., Бражник Е.С. Анализ организации фоновой активности септальных нейронов морской свинки in vitro. Нейрофизиология. 19(5): 586-595. 1987. [Vinogradova O.S., Zhadina S.D., Brazhnik E.S. Analysis of organization of background activity of guinea pig septal neurons in vitro. Neurophysiology, 19(5): 586-595. 1987. (In Russ.)]

King C., Recce M., O’Keefe J. The rhythmicity of cells of the medial septum/diagonal band of Broca in the awake freely moving rat: relationships with behaviour and hippocampal theta. Eur. J. Neurosci. 10(2): 464-477. 1998.

Buzsáki G. Theta Oscillations in the Hippocampus. Neuron. 33(3): 325–340. 2002.

Colgin L.L. Mechanisms and Functions of Theta Rhythms. Annu. Rev. Neurosci. 36(1) : 295–312. 2013.

Vinogradova O.S. Expression, control, and probable functional significance of the neuronal theta-rhythm. Prog. Neurobiol. 45(6): 523–583. 1995.

Gogolák G., Stumpf C., Petsche H., Sterc J. The firing pattern of septal neurons and the form of the hippocampal theta wave. Brain Res. 7(2): 201–207. 1968.

Petsche H., Stumpf C. Topographic and toposcopic study of origin and spread of the regular synchronized arousal pattern in the rabbit. Electroencephalogr. Clin. Neurophysiol. (12): 589–600. 1960.

Vertes R.P., Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience. 81(4): 893–926. 1997.

Brazhnik E.S., Vinogradova O.S., Karanov A.M. Frequency modulation of neuronal theta-bursts in rabbit’s septum by low-frequency repetitive stimulation of the afferent pathways. Neuroscience. 14(2): 501–508. 1985.

Klemm W.R. Effects of electric stimulation of brain stem reticular formation on hippocampal theta rhythm and muscle activity in unanesthetized, cervical-and midbrain-transected rats. Brain Res. 41(2): 331–344. 1972.

Macadar A.W., Chalupa L.M., Lindsley D.B. Differentiation of brain stem loci which affect hippocampal and neocortical electrical activity. Exp. Neurol. 43(3): 499–514. 1974.

McNaughton N., Richardson J., Gore C. Reticular elicitation of hippocampal slow waves: common effects of some anxiolytic drugs. Neuroscience. 19(3): 899–903. 1986.

McNaughton N., Sedgwick E.M. Reticular stimulation and hippocampal theta rhythm in rats: effects of drugs. Neuroscience. 3(7): 629–632. 1978.

Paiva T., Da Silva F.L. Mollevanger W. Modulating systems of hippocampal EEG. Electroencephalogr. Clin. Neurophysiol. 40(5): 470–480. 1976.

Vertes R.P. Brain stem generation of the hippocampal EEG. Prog. Neurobiol. 19(3): 159–186. 1982.

Assaf S.Y., Miller J.J. The role of a raphe serotonin system in the control of septal unit activity and hippocampal desynchronization. Neuroscience. 3(6): 539–550. 1978.

McNaughton N., Azmitia E.C., Williams J.H., Buchan A., Gray J.A. Septal elicitation of hippocampal theta rhythm after localized de-afferentation of serotoninergic fibers. Brain Res.200(2): 259–269. 1980.

Yamamoto T., Watanabe S., Oishi R., Ueki S. Effects of midbrain raphe stimulation and lesion on EEG activity in rats. Brain Res. Bull. 4(4): 491–495. 1979.

Maru E., Takahashi L.K., Iwahara S. Effects of median raphe nucleus lesions on hippocampal EEG in the freely moving rat. Brain Res. 163(2): 223–234. 1979.

Babb T.L., Kupfer W.R., Pretorius J.K., Crandall P.H., Levesque M.F. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience. 42(2): 351–363. 1991.

Engel J. Etiology as a risk factor for medically refractory epilepsy A case for early surgical intervention. Neurology. 51(5): 1243–1244. 1998.

Mathern GW, Kuhlman PA, Mendoza D, Pretorius JK. Human fascia dentata anatomy and hippocampal neuron densities differ depending on the epileptic syndrome and age at first seizure. J. Neuropathol. Exp. Neurol. 56(2): 199–212. 1997.

Mody I. Synaptic plasticity in kindling. Adv. Neurol. (79): 631–643. 1999.

Cymerblit-Sabba A., Schiller Y. Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo. J. Neurophysiol. 107(6): 1718–1730. 2012.

Mal’kov A.E., Karavaev E.N., Popova I.Y., Kichigina V.F. Changes in oscillatory activity of neurons in the medial septal area in animals with a model of chronic temporal epilepsy. Neurosci. Behav. Physiol. 38(9): 995–999. 2008.

Yaari Y., Beck H. “Epileptic neurons” in temporal lobe epilepsy. Brain Pathol. Zurich Switz. 12(2): 234–239. 2002.

Colom L.V., García-Hernández A., Castaneda M.T., Perez-Cordova M.G., Garrido-Sanabria E.R. Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation. J. Neurophysiol. 95(6): 3645–3653. 2006.

Kitchigina V., Popova I., Sinelnikova V., Malkov A., Astasheva E., Shubina L., Aliev R. Disturbances of septohippocampal theta oscillations in the epileptic brain: Reasons and consequences. Exp. Neurol. (247): 314–327. 2013.

Popova I.Y., Sinelnikova V.V., Kitchigina V.F. Disturbance of the correlation between hippocampal and septal EEGs during epileptogenesis. Neurosci. Lett. 442(3): 228–233. 2008.

Broggini A.C.S., Esteves I.M., Romcy-Pereira R.N., Leite J.P., Leao R.N. Pre-ictal increase in theta synchrony between the hippocampus and prefrontal cortex in a rat model of temporal lobe epilepsy. Exp. Neurol. (279): 232–242. 2016.

Grasse D.W., Karunakaran S., Moxon K.A. Neuronal synchrony and the transition to spontaneous seizures. Exp. Neurol. (248): 72–84. 2013.

Kitchigina V.F., Butuzova M.V. Theta activity of septal neurons during different epileptic phases: the same frequency but different significance?. Exp. Neurol.. 216(2): 449–458. 2009

Colom L.V., Garrido-Sanabria E. Modulation of normal and altered hippocampal excitability states by septal networks. J. Neurosci. Res. 85(13): 2839–2843. 2007.

Miller J.W., Turner G.M., Gray B.C. Anticonvulsant effects of the experimental induction of hippocampal theta activity. Epilepsy Res.. 18(3): 195–204. 1994

Cavazos J., Sutula T.P. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res. 527(1): 1–6. 1990.

Кичигина В.Ф., Брагин А.Г. Нейронная активность септум при генерации гиппокампальных судорожных разрядов в модели острой эпилепсии. ЖВНД им И.П. Павлова. 55(1): 110–116. 2005.[Kitchigina V.F., Bragin A.G. Zh Vyssh Nerv Deiat I): Pavlova. The activity of the septum in the generation of hippocampal convulsive discharges In the model of acute epilepsy. 55(1):110-116. 2005. (In Russ.)]

Blume W.T., Young G.B., Lemieux J.F. EEG morphology of partial epileptic seizures. Electroencephalogr. Clin. Neurophysiol. 57(4): 295–302. 1984.

Medvedev A., Mackenzie L., Hiscock J.J., Willoughby J.O. Kainic acid induces distinct types of epileptiform discharge with differential involvement of hippocampus and neocortex. Brain Res. Bull. 52(2): 89–98. 2000.

Manseau F., Danik M., Williams S. A functional glutamatergic neurone network in the medial septum and diagonal band area. J. Physiol. 566(3): 865–884. 2005.

Sotty F., Danik M., Manseau F., Laplante F., Quirion R., Williams S. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J. Physiol.551, P. 927–943. 2003.

Brazhnik E.S., Fox S.E. Action potentials and relations to the theta rhythm of medial septal neurons in vivo. Exp. Brain Res. Exp. Hirnforsch. Expérimentation Cérébrale. 127(3): 244–258. 1999.

Henderson Z., Morris N.P., Grimwood P., Fiddler G., Yang H.W. Morphology of local axon collaterals of electrophysiologically characterised neurons in the rat medial septal/ diagonal band complex. J. Comp. Neurol. 430(3): 410–432. 2001.

Kiss J., Maglóczky Z., Somogyi J., Freund T.F. Distribution of calretinin-containing neurons relative to other neurochemically identified cell types in the medial septum of the rat. Neuroscience.. 78(2): 399–410. 1997

Freund T.F. GABAergic septohippocampal neurons contain parvalbumin. Brain Res. 478(2): 375–381. 1989.

Hangya B., Borhegyi Z., Szilágyi N., Freund T.F., Varga V. GABAergic Neurons of the Medial Septum Lead the Hippocampal Network during Theta Activity. J. Neurosci. 29(25): 8094–8102. 2009.

Varga V., Hangya B., Kránitz K., Ludányi A., Zemankovics R., Katona I, Shigemoto R., Freund T.F., Borhegyi Z. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J. Physiol. 586(16): 3893–3915. 2008.

Freund T.F., Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336(6195): 170–173. 1988.

Colom L.V., Castaneda M.T., Reyna T., Hernandez S., Garrido-Sanabria E. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synap. N. Y. N. 58(3): 151–164. 2005.

Dannenberg H., Pabst M., Braganza O., Schoch S., Niediek J., Bayraktar M., Mormann F., Beck H. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J. Neurosci. 35(22): 8394–8410. 2015.

Robinson J., Manseau F., Ducharme G., Amilhon B., Vigneault E., Mestikawy S.E., Williams S. Optogenetic activation of septal glutamatergic neurons drive hippocampal theta rhythms. J. Neurosci. 36(10): 3016–3023. 2016.

Jinno S., Kosaka T. Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study. Brain Res. 945(2): 219–231. 2002.

Toth K., Borhegyi Z., Freund T.F. Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex. J. Neurosci.. 13(9): 3712–3724. 1993

Blasco-Ibanez J.M., Freund T.F. Synaptic input of horizontal interneurons in stratum oriens of the hippocampal CA1 subfield: structural basis of feed-back activation. Eur. J. Neurosci. 7(10): 2170–2180. 1995.

Gulyás A.I., Hájos N., Katona I., Freund T.F. Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. Eur. J. Neurosci. 17(9): 1861–1872. 2003.

Takacs V.T., Freund T.F., Gulyás A.I. Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum. Eur. J. Neurosci. 28(1): 148–164. 2008.

Denham M.J., Borisyuk R.M. A model of theta rhythm production in the septal-hippocampal system and its modulation by ascending brain stem pathways. Hippocampus. 10(6): 698–716. 2000.

Rokers B., Mercado E., Allen T., Myers C.E., Gluck M.A. A connectionist model of septohippocampal dynamics during conditioning: Closing the loop. Behav. Neurosci. 116(1): 48–62. 2002.

Wang X.-J. Pacemaker Neurons for the Theta Rhythm and Their Synchronization in the Septohippocampal Reciprocal Loop. J. Neurophysiol.. 87(2): 889–900. 2002

Manseau F., Goutagny R., Danik M., Williams S. The hippocamposeptal pathway generates rhythmic firing of gabaergic neurons in the medial septum and diagonal bands: an investigation using a complete septohippocampal preparation in vitro. J. Neurosci. 28(15): 4096–4107. 2008.

Kang D., Ding M., Topchiy I., Kocsis B. Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings. Front. Neuroanat. (11). 2017

Mattis J., Brill J., Evans S., Lerner T.N., Davidson T.J., Hyun M, Ramakrishnan C., Deisseroth K., Huguenard J.R. Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection. j. Neurosci. 34(35): 11769–11780. 2014.

Dragoi G. Carpi D., Recce M., Csicsvari J., Buzsáki G. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J. Neurosci. 19(14): 6191–6199. 1999.

Nishida H., Takahashi M., Lauwereyns J. Within-session dynamics of theta–gamma coupling and high-frequency oscillations during spatial alternation in rat hippocampal area CA1. Cogn. Neurodyn. 8(5): 363–372. 2014.

Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning: hippocampal sharp wave-ripple. Hippocampus. 25(10): 1073–1188. 2015.

Lenck-Santini P.-P., Scott R.C. Mechanisms responsible for cognitive impairment in epilepsy. Cold Spring Harb. Perspect. Med. 5(10). 2015

Wittner L., Maglóczky Z. Synaptic reorganization of the perisomatic inhibitory network in hippocampi of temporal lobe epileptic patients. BioMed Res. (2017). 2017.

Garrido Sanabria E.R., Castaneda M.T., Banuelos C., Perez-Cordova M.G., Hernandez S, Colom LV. Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience. 142(3): 871–883. 2006.

Malkov A.E., Popova I.Y. Functional changes in the septal GABAergic system of animals with a model of temporal lobe epilepsy. Gen. Physiol. Biophys. 30(3): 310–320. 2011.

Unal G., Joshi A., Viney T.J., Kis V., Somogyi P. Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. J. Neurosci. 35(48): 15812–15826. 2015.

Lopez-Pigozzi D., Laurent F., Brotons-Mas J.R., Valderrama M., Valero M., Fernandez-Lamo I., Cid E., Gomez-Dominguez D., Gal B., Prida L.M. de la. Altered oscillatory dynamics of ca1 parvalbumin basket cells during theta–gamma rhythmopathies of temporal lobe epilepsy. eNeuro. 3(6): ENEURO.0284-16.2016. 2016.

Wang Y., Romani S., Lustig B., Leonardo A., Pastalkova E. Theta sequences are essential for internally generated hippocampal firing fields. Nat. Neurosci. 18(2): 282–288. 2015.

Henderson Z., Fiddler G., Saha S., Boros A., Halasy K. A parvalbumin-containing, axosomatic synaptic network in the rat medial septum: relevance to rhythmogenesis. Eur. J. Neurosci. 19(10): 2753–2768. 2004.

Мысин И.Е., Казанович Я.Б., Кичигина В.Ф. Моделирование нейрональной сети медиальной септальной области как пейсмейкера тета-ритма. Фундаментальные Исследования. № 11–4. 2013.[Mysin I.E., Kazanovich Y.B., Kitchigina V.F. Modeling of the neuronal network of the medial septal region as a pacemaker of theta rhythm. Fundamental Research. 2013. N. 11-4. (In Russ.)]

Mysin I.E., Kitchigina V.F., Kazanovich Y. Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations. J. Comput. Neurosci. 39(1). 2015.

Мальков А.Е., Попова И.Ю. Изменение нейронной активности в медиальной септальной области мозга при височной эпилепсии. Биологические Мембраны. 28(3): 230–234. 2011.[Malkov A. E., Popova I. Yu., Change of neural activity in the medial septal region of the brain in temporal lobe epilepsy. Biological Membranes. 28(3):230-234 2011. (In Russ.)]

García-Hernández A., Bland B.H., Facelli J.C., Colom L.V. Septo-hippocampal networks in chronic epilepsy. Exp. Neurol. 222(1): 86–92. 2010.

Follesa P., Tarantino A., Floris S., Mallei A., Porta S., Tuligi G., Cagetti E., Caddeo M., Mura A., Serra M., Biggio G. Changes in the gene expression of GABAA receptor subunit mRNAs in the septum of rats subjected to pentylenetetrazol-induced kindling. Brain Res. Mol. Brain Res. 70(1): 1–8. 1999.

Soares J.I., Valente M.C., Andrade P.A., Maia G.H., Lukoyanov N.V. Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. J. Comp. Neurol. 525(12): 2690–2705. 2017.

Bragin A. Mody I., Wilson C.L., Engel J. Local generation of fast ripples in epileptic brain. J. Neurosci. 22(5): 2012–2021. 2002.

Ferencz I., Leanza G., Nanobashvili A., Kokaia Z., Kokaia M., Lindvall O. Septal cholinergic neurons suppress seizure development in hippocampal kindling in rats: comparison with noradrenergic neurons. Neuroscience. 102(4): 819–832. 2001.

Astasheva E., Astashev M., Kitchigina V. Changes in the behavior and oscillatory activity in cortical and subcortical brain structures induced by repeated l-glutamate injections to the medial septal area in guinea pigs. Epilepsy Res. 2015. 109): 134–145. 2015.

Rodríguez M.J., Robledo P., Andrade C., Mahy N. In vivo co-ordinated interactions between inhibitory systems to control glutamate-mediated hippocampal excitability. J. Neurochem. 95(3): 651–661. 2005.

Justus D., Dalügge D., Bothe S., Fuhrmann F., Hannes C., Kaneko H., Friedrichs D., Sosulina L., Schwarz I., Elliott D.A., Schoch S., Bradke F., Schwarz M.K., Remy S. Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat. Neurosci. 20(1): 16–19. 2017.

Sinel’nikova V.V., Popova I.Y., Kichigina V.F. Correlational relationships between the hippocampus and medial septal area and their changes during epileptogenesis. Neurosci. Behav. Physiol. 39(7): 619–623. 2009.

Iannetti P., Papetti L., Nicita F., Castronovo A., Ursitti F., Parisi P., Spalice A., Verrotti A. Developmental anomalies of the medial septal area: possible implication for limbic epileptogenesis. Childs Nerv. Syst. 27(5): 765–770. 2011.

Konopacki J., Bland B.H., MacIver M.B., Roth S.H. Cholinergic theta rhythm in transected hippocampal slices: independent CA1 and dentate generators. Brain Res.. 436(2): 217–222. 1987

Fellous J.-M., Sejnowski T.J. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus. 10(2): 187–197. 2000.

Fisahn A., Yamada M., Duttaroy A., Gan J-W., Deng C-X., McBain C.J., Wess J. Muscarinic induction of hippocampal gamma oscillations requires coupling of the m1 receptor to two mixed cation currents. Neuron. 33(4): 615–624. 2002.

Gillies M.J., Traub R.D., LeBeau F.E.N., Davies C.H., Gloveli T., Buhl E.H., Whittington M.A. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. 543(Pt 3): 779–793. 2002.

Williams J.H., Kauer J.A. Properties of carbachol-induced oscillatory activity in rat hippocampus. J. Neurophysiol. 78(5): 2631–2640. 1997.

Csicsvari J., Hirase H., Czurko A., Buzsáki G. Reliability and state dependence of pyramidal cell–interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron. 21(1): 179–189. 1998.

Soltesz I., Deschênes M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 70(1): 97–116. 1993.

Ylinen A., Soltész I., Bragin A., Penttonen M., Sik A., Buzsáki G. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus. 5(1): 78–90. 1995.

Toth K., Freund T.F., Miles R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J. Physiol. 500(2): 463–474. 1997.

Kocsis B., Bragin A., Buzsáki G. Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J. Neurosci. 19(14): 6200–6212. 1999.

Borisyuk R. Oscillatory activity in the neural networks of spiking elements. Biosystems. 67(1–3): 3–16. 2002.

Hopfield J.J., Herz A.V. Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. Proc. Natl. Acad. Sci. U. S. A. 92(15): 6655–6662. 1995.

Kudela P., Franaszczuk P.J., Bergey G.K. Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biol. Cybern. 88(4): 276–285. 2003.

Bezaire M.J., Raikov I., Burk K., Vyas D., Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife. (5). 2016.

Hajos M., Hoffmann W.E., Orban G., Kiss T., Erdi P. Modulation of septo-hippocampal θ activity by GABAA receptors: an experimental and computational approach. Neuroscience. 126(3): 599–610. 2004.

Rotstein H.G., Pervouchine D.D., Acker C.D., Gillies M.J., White J.A., Buhl E.H., Whittington M.A., Kopell N. Slow and Fast Inhibition and an H-Current Interact to Create a Theta Rhythm in a Model of CA1 Interneuron Network. J. Neurophysiol. 94(2): 1509–1518. 2005.

Fisher R.S. Stimulation of the medial septum should benefit patients with temporal lobe epilepsy. Med. Hypotheses. 84(6): 543–550. 2015.

Lee D.J., Izadi A., Melnik M., Seidl S., Echeverri A., Shahlaie K., Gurkoff G.G. Stimulation of the medial septum improves performance in spatial learning following pilocarpine-induced status epilepticus. Epilepsy Res. 130): 53–63. 2017.

Ng M., Pavlova M. Why are seizures rare in rapid eye movement sleep? review of the frequency of seizures in different sleep stages [Electronic resource]: Research article. Epilepsy Research and Treatment. 2013. URL: https://www.hindawi.com/journals/ert/2013/932790/abs/.

Dinner D.S. Effect of sleep on epilepsy. J. Clin. Neurophysiol.. 19(6): 504. 2002

Jefferys J.G.R., Jiruska P., de Curtis M., Avoli M. Limbic network synchronization and temporal lobe epilepsy. Jasper’s basic mechanisms of the epilepsies. 4th ed. National Center for Biotechnology Information (US). 2012.

Sedigh-Sarvestani M., Thuku G.I., Sunderam S., Parkar A., Weinstein S.L., Schiff S.J, Gluckman B.J. Rapid eye movement sleep and hippocampal theta oscillations precede seizure onset in the tetanus toxin model of temporal lobe epilepsy. J. Neurosci. 34(4): 1105–1114. 2014.

Strange B.A., Witter M.P., Lein E.S., Moser E.I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15(10): 655–669. 2014.

Schmidt B., Hinman J.R., Jacobson T.K., Szkudlarek E., Argraves M., Escabi M.A., Markus E.J. Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making. J. Neurosci. 33(14): 6212–6224. 2013.

Mizuseki K., Buzsaki G. Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Phil Trans R Soc B. 369(1635). 2014.