ИШЕМИЧЕСКИЕ И РЕПЕРФУЗИОННЫЕ ПОВРЕЖДЕНИЯ СЕРДЦА: РОЛЬ Ca2+-КАНАЛОВ L-ТИПА И Na+/ H+ -ОБМЕННИКА. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ И КЛИНИЧЕСКИХ ДАННЫХ
PDF

Ключевые слова

сердце
ишемия
реперфузия
Ca2 -канал L-типа
Na / H -обменник

Как цитировать

Цибульников, С. Ю., Прокудина, Е. С., Сингх, Н., Клим, В. С., Скрябина, А. А., Воронков, Н. С., Нестеров, Е. А., & Маслов, Л. Н. (2019). ИШЕМИЧЕСКИЕ И РЕПЕРФУЗИОННЫЕ ПОВРЕЖДЕНИЯ СЕРДЦА: РОЛЬ Ca2+-КАНАЛОВ L-ТИПА И Na+/ H+ -ОБМЕННИКА. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ И КЛИНИЧЕСКИХ ДАННЫХ. Российский физиологический журнал им. И. М. Сеченова, 105(7), 801–811. https://doi.org/10.1134/S0869813919070100

Аннотация

Большинство опубликованных данных свидетельствует, что блокаторы Ca2+-каналов L-типа при введении перед коронароокклюзией или после возникновения ишемии задерживают появление необратимых повреждений кардиомиоцитов. Верапамил способен предупреждать реперфузионное повреждение сердца. Кардиопротекторный эффект антагонистов кальция исчезает при продолжительности ишемии более 3 ч. Ca2+-каналы L-типа играют существенную роль в патогенезе ишемических и реперфузионных повреждений сердца, если продолжительность ишемии составляет менее 3 ч. Нифедипин увеличивал риск смерти среди пациентов с острым инфарктом миокарда (ОИМ). Верапамил при интракоронарном введении пациентам с ОИМ снижал частоту возникновения микроваскулярной обструкции. Результаты клинических исследований не позволяют с уверенностью судить о роли Ca2+-каналов L-типа в патогенезе ОИМ. Экспериментальные исследования свидетельствуют, что ингибиторы Na+/ H+ -обменника (NHE) способны предупреждать как ишемические, так и реперфузионные повреждения сердца. NHE играет важную роль в ишемическом и реперфузионном повреждении сердца. Ингибиторы NHE могут оказаться эффективными в терапии ОИМ в случае ранней госпитализации пациентов с этим заболеванием. Опубликованные данные не позволяют сделать вывод о роли NHE в ишемическом и реперфузионном повреждении сердца человека.

https://doi.org/10.1134/S0869813919070100
PDF

Литература

Маслов Л.Н., Воронков Н.С., Семенцов А.С., Джагги А.С., Де Петроцеллис Л., Ванг Х., Нестеров Е.А., Лишманов Ю.Б. Реперфузионное повреждение сердца. Основные звенья патогенеза. Рос. физиол. журн. им. И.М.Сеченова. 104(8): 881–903. 2018. [Maslov L.N., Voronkov N.S., Sementsov A.S., Jaggy A.S., De Petrocelis L., Wang X., Nesterov E.A., Lishmanov Y.B. Reperfusion injury to the heart. The main links of pathogenesis. Russ. J. Physiol. 104(8): 881–903. 2018 (In Russ.)]

Ndrepepa G., Colleran R., Kastrati A. Reperfusion injury in ST-segment elevation myocardial infarction. Coron. Artery Dis. 28(3): 253–262. 2017.

Ma H.J., Li Q., Ma H-J., Guan Y., Shi M., Yang J. Chronic intermittent hypobaric hypoxia ameliorates ischemia/reperfusion-induced calcium overload in heart via Na/Ca2+ exchanger in developing rats. Cell Physiol. Biochem. 34(2): 313–324. 2014.

Bell J.R., Vila-Petroff M., Delbridge L.M.D. CaMKII-dependent responses to ischemia and reperfusion challenges in the heart. Front. Pharmacol. 5: 96. 2014.

Mattiazzi A., Argenziano M., Aguilar-Sanchez Y., Mazzocchi G., Escobar A.L. Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts. J. Mol. Cell Cardiol. 79: 69–78. 2015.

Odunewu-Aderibigbe A., Fliegel L. The Na+/H+ exchanger and pH regulation in the heart. IUBMB Life. 66(10): 679–685. 2014.

Piper H.M, García-Dorado D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann. Thorac. Surg. 68(5): 1913–1919. 1999.

Liao Q.S., Du Q., Lou J., Xu J-Y., Xie R. Roles of Na+/Ca2+ exchanger 1 in digestive system physiology and pathophysiology. World J. Gastroenterol. 25(3): 287–299. 2019.

Treinys R., Jurevicius J. L-type Ca2+ channels in the heart: structure and regulation. Medicina (Kaunas). 44(7): 491–499. 2008.

Nussinovitch I. Ca2+ Channels in Anterior Pituitary Somatotrophs: A Therapeutic Perspective. Endocrinology. 159(12): 4043–4055. 2018.

Smith H.J., Singh B.N., Nisbet H.D., Norris R.M. Effects of verapamil on infarct size following experimental coronary occlusion. Cardiovasc. Res. 9(4): 569–578. 1975.

Karlsberg R.P., Henry P.D., Ahmed S.A., Sobel B.E., Roberts R. Lack of protection of ischemic myocardium by verapamil in conscious dogs. Eur. J. Pharmacol. 42(4): 339–346. 1977.

Reimer K.A., Lowe J.E., Rasmussen M.M., Jennings R.B. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 56(5): 786–794. 1977.

Anand I.S., Sharma P.L., Chakravarti R.N., Wahi P.L. Experimental myocardial infarction in rhesus monkeys. Verapamil pretreatment in the reduction of infarct size. Adv. Myocardiol. 2: 425–433. 1980.

DeBoer L.W., Strauss H.W., Kloner R.A., Rude R.E., Davis R.F., Maroko P.R., et al. Autoradiographic method for measuring the ischemic myocardium at risk: effects of verapamil on infarct size aftr experimental coronary artery occlusion. Proc. Natl. Acad. Sci. USA. 77(10): 6119–6123. 1980.

Reimer K.A., Jennings R.B. Verapamil in two reperfusion models of myocardial infarction. Temporary protection of severely ischemic myocardium without limitation of ultimate infarct size. Lab. Invest. 51(6): 655–666. 1984.

Lo H.M., Kloner R.A., Braunwald E. Effect of intracoronary verapamil on infarct size in the ischemic, reperfused canine heart: critical importance of the timing of treatment. Am. J. Cardiol. 56(10): 672–677. 1985.

Lishmanov Y.B., Maslov L.N., Mukhomedzyanov A.V. Role of β-Adrenoceptors and L-Type Ca2+-Channels in the Mechanism of Reperfusion-Induced Heart Injury. Bull. Exp. Biol. Med. 161(1): 20–23. 2016.

Selwyn A.P., Welman E., Fox K., Horlock P., Pratt T., Klein M. The effects of nifedipine on acute experimental myocardial ischemia and infarction in dogs. Circ. Res. 44(1): 16–23. 1979.

Geary G.G., Smith G.T., Suehiro G.T., McNamara J.J. Failure of nifedipine therapy to reduce myocardial infarct size in the baboon. Am. J. Cardiol. 49(2): 331–338. 1982.

Melin J.A., Becker L.C., Hutchins G.M. Protective effect of early and late treatment with nifedipine during myocardial infarction in the conscious dog. Circulation. 69(1): 131–141. 1984.

McAllister R.G. Clinical pharmacokinetics of calcium channel antagonists. J. Cardiovasc. Pharmacol. 4 Suppl 3: S340-S345. 1982.

Flaim S.F., Zelis R. Diltiazem Pretreatment Reduces Experimental Myocardial Infarct Size in Rat. Pharmacology. 23: 281–286. 1981.

Bush L.R., Romson J.L., Ash J.L., Lucchesi B.R. Effect of diltiazem on extent of ultimate myocardial injury resulting from temporary coronary artery occlusion in dogs. J. Cardiovasc. Pharmacol. 4(2): 285–296.

Klein H.H., Schubothe M., Nebendahl K., Kreuzer H. The effect of two different diltiazem treatments on infarct size in ischemic, reperfused porcine hearts. Circulation. 69(5): 1000–1005. 1984.

Heydari B., Abdullah S., Pottala J.V., Shah R., Abbasi S., Mandry D.. Effect of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction. Circulation. 134(5): 378–391. 2016.

Nakatsuma K., Shiomi H., Watanabe H., Morimoto T., Taniguchi T., Toyota T. Comparison of Long-Term Mortality After Acute Myocardial Infarction Treated by Percutaneous Coronary Intervention in Patients Living Alone Versus Not Living Alone at the Time of Hospitalization. Am. J. Cardiol. 114(4): 522–527. 2014.

Pasupathy S., Tavella R., Grover S., Raman B., Procter N.E.K., Du Y.T., Mahadavan G., Stafford I., Heresztyn T., Holmes A., Zeitz C., Arstall M., Selvanayagam J., Horowitz J.D., Beltrame J.F. Early use of N-acetylcysteine with itrate therapy in patients undergoing primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction reduces myocardial infarct size (the NACIAM Trial [N-acetylcysteine in Acute Myocardial Infarction]). Circulation. 136(10): 894–903. 2017.

Nakamura M., Yamagishi M., Ueno T., Hara K., Ishiwata S., Itoh T., Hamanaka I., Wakatsuki T., Sugano T., Kawai K., Kimura T. Current treatment of ST elevation acute myocardial infarction in Japan: door-to-balloon time and total ischemic time from the J-AMI registry. Cardiovasc. Interv. Ther. 28(1): 30–36. 2013.

Tsujita K., Shimomura H., Kaikita K., Kawano H., Hokamaki J., Nagayoshi Y., Yamashita T., Fukuda M., Nakamura Y., Sakamoto T., Yoshimura M., Ogawa H. Long-term efficacy of edaravone in patients with acute myocardial infarction. Circ. J. 70(7): 832–837. 2006.

Bussmann W.D., Seher W., Grungras M. Reduction in CK- and CKMB-measured infarct size by verapamil. Dotsch. Med. Wochenschr. 108(27): 1047–1053. 1983.

Bussmann W.D., Seher W., Grungras M. Reduction of creatine kinase and creatine kinase-MB indexes of infarct size by intravenous verapamil. Am. J. Cardiol. 54(10): 1224–1230. 1984.

Muller J.E., Morrison J., Stone P.H., Rude R.E., Rosner B., Roberts R., Pearle D.L., Turi Z.G., Schneider J.F., Serfas D.H., Tate C., Scheiner E., Sobel B.E., Hennekens C.H., Braunwald E. Nifedipine therapy for patients with threatened and acute myocardial infarction: a randomized, double-blind, placebo-controlled comparison. Circulation. 69(4): 740–747. 1984.

Sirnes P.A., Overskeid K., Pedersen T.R., Bathen J., Drivenes A., Frшland G.S., Kjekshus J.K., Landmark K., Rokseth R., Sirnes K.E., Sundoy A., Torjussen B.R., Westlund K.M., Wik B.A. Evolution of infarct size during the early use of nifedipine in patients with acute myocardial infarction: the Norwegian Nifedipine Multicenter Trial. Circulation. 70(4): 638–644. 1984.

Zannad F., Amor M., Karcher G., Maurin P., Ethevenot G., Sebag C., Bertrand A., Pernot C.,

Gilgenkrantz J. M. Effect of diltiazem on myocardial infarct size estimated by enzyme release, serial thallium-201 single-photon emission computed tomography and radionuclide angiography. Am. J. Cardiol. 61(15): 1172–1177. 1988.

Theroux P., Grйgoire J., Chin C., Pelletier G., de Guise P., Juneau M. Intravenous diltiazem in acute myocardial infarction. Diltiazem as adjunctive therapy to activase (DATA) trial. J. Am. Coll. Cardiol. 32(3): 620–628. 1998.

Pizzetti G., Mailhac A., Li Volsi L., Di Marco F., Lu C., Margonato A., Chierchia S.L. Beneficial effects of diltiazem during myocardial reperfusion: a randomized trial in acute myocardial infarction. Ital. Heart J. 2(10): 757–765. 2001.

Abdelaziz H.K., Elkilany W., Khalid S., Sabet S., Saad M. Efficacy and safety of intracoronary verapamil versus sodium nitroprusside for the prevention of microvascular obstruction during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Coron. Artery Dis. 28(1): 11–16. 2017.

Gumina R.J., Mizumura T., Beier N., Schelling P., Schultz J.J., Gross G.J. A new sodium/hydrogen exchange inhibitor, EMD 85131, limits infarct size in dogs when administered before or after coronary artery occlusion.

J. Pharmacol. Exp. Ther. 286(1): 175–183. 1998.

Kristo G., Yoshimura Y., Ferraris S.P., Jahania S.A., Mentzer R.M., Lasley R.D. The preischemic combination of the sodium-hydrogen exchanger inhibitor cariporide and the adenosine agonist AMP579 acts additively to reduce porcine myocardial infarct size. J. Am. Coll. Surg. 199(4): 586–594. 2004.

Fantinelli J.C., Cingolani H.E., Mosca S.M. Na+/H+ exchanger inhibition at the onset of reperfusion decreases myocardial infarct size: role of reactive oxygen species. Cardiovasc. Pathol. 15(4): 179–184. 2006.

Yang X.M., Cui L., Alhammouri A., Downey J.M., Cohen M.V. Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart. Cardiovasc. Drugs Ther. 27(5): 403–412. 2013.

Knight D.R., Smith A.H., Flynn D.M., MacAndrew J.T., Ellery S.S., Kong J.X., Marala R.B., Wester R.T., Guzman-Perez A., Hill R.J., Magee W.P., Tracey W.R. A novel sodium-hydrogen exchanger isoform-1 inhibitor, zoniporide, reduces ischemic myocardial injury in vitro and in vivo. J. Pharmacol. Exp. Ther. 297(1): 254–259. 2001.

Szepesi J., Acsai K., Sebok Z., Prorok J., Pollesello P., Levijoki J., Papp J.G., Varro A., Toth A. Comparison of the efficiency of Na+/Ca2+ exchanger or Na+/H+ exchanger inhibition and their combination in reducing coronary reperfusion-induced arrhythmias. J. Physiol. Pharmacol. 66(2): 215–226. 2015.

Sakurai S., Kuroko Y., Shimizu S., Kawada T., Akiyama T., Yamazaki T., Sugimachi M., Sano S. Effects of intravenous cariporide on release of norepinephrine and myoglobin during myocardial ischemia/reperfusion in rabbits. Life Sci. 114(2): 102–106. 2014.

Franciosi S., Perry F.K., Roston T.M., Armstrong K.R., Claydon V.E., Sanatani S. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton. Neurosci. 205: 1–11. 2017.

DeWitt E.S., Black K.J., Thiagarajan R.R., DiNardo J.A., Colan S.D., McGowan F.X., Kheir J.N. Effects of commonly used inotropes on myocardial function and oxygen consumption under constant ventricular loading conditions. J. Appl. Physiol. 121(1): 7–14. 2016.

Zeymer U., Suryapranata H., Monassier J.P., Opolski G., Davies J., Rasmanis G., Linssen G., Tebbe U., Schrцder R., Tiemann R., Machnig T., Neuhaus K.L.; ESCAMI Investigators. The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial. J. Am. Coll. Cardiol. 38(6): 1644–1650. 2001.

Mentzer R.M., Bartels C., Bolli R., Boyce S., Buckberg G.D., Chaitman B., Haverich A., Knight J., Menaschй P., Myers M.L., Nicolau J., Simoons M., Thulin L., Weisel R.D.; EXPEDITION Study Investigators. Collaborators (121). Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann. Thorac. Surg. 85(4): 1261–1270. 2008.

Kimura K., Nakao K., Shibata Y., Sone T., Takayama T., Fukuzawa S., Nakama Y., Hirayama H., Matsumoto N., Kosuge M., Hiro T., Sakuma H., Ishihara M., Asakura M., Hamada C., Kaneko A., Yokoi T., Hirayama A.; AMITY study group. Randomized controlled trial of TY-51924, a novel hydrophilic NHE inhibitor, inacute myocardial infarction. J. Cardiol. 67(4): 307–313. 2016.

Takayama T., Kimura K., Fukuzawa S., Hirayama H., Sone T., Ueda Y., Uematsu M., Ishihara M., Nakao K., Matsumoto N., Kosuge M., Hiro T., Asakura M., Kaneko A., Yokoi T., Hirayama A. Evaluation of the safety and efficacy of TY-51924 in patients with ST elevated acute myocardial infarction - Early phase II first in patient pilot study. J. Cardiol. 67(2): 162–169. 2016.