ИЗМЕНЕНИЕ СВЕРХМЕДЛЕННЫХ КОЛЕБАНИЙ ПОТЕНЦИАЛОВ МОЗГА ПОД ВЛИЯНИЕМ БОС-ТРЕНИНГА ПО СВЕРХМЕДЛЕННЫМ ЧАСТОТАМ ЭЭГ
PDF

Ключевые слова

ЭЭГ
биоуправление
электроэнцефалография
сверхмедленные колебания потенциалов мозга
вариабельность сердечного ритма

Как цитировать

Гринь-Яценко, В. А., Пономарев, В. А., & Кропотов, Ю. Д. (2023). ИЗМЕНЕНИЕ СВЕРХМЕДЛЕННЫХ КОЛЕБАНИЙ ПОТЕНЦИАЛОВ МОЗГА ПОД ВЛИЯНИЕМ БОС-ТРЕНИНГА ПО СВЕРХМЕДЛЕННЫМ ЧАСТОТАМ ЭЭГ. Российский физиологический журнал им. И. М. Сеченова, 109(5), 600–611. https://doi.org/10.31857/S0869813923050047

Аннотация

В настоящем исследовании представлено сравнение влияния на электрическую активность ЭЭГ в диапазоне сверхмедленных частот двух видов воздействия: ЭЭГ биоуправления по сверхмедленным колебаниям и тренировки вариабельности сердечного ритма. В исследовании приняли участие 17 здоровых испытуемых в возрасте от 21-го до 50-ти лет с незначительно выраженными симптомами физиологического и/или психологического характера, не имевших в анамнезе неврологических и психических заболеваний. Для оценки результатов тренинга проводился анализ спектральной мощности медленных колебаний ЭЭГ во время выполнения теста на внимание (Visual Go/NoGo), зарегистрированных до и после двадцати сеансов биоуправления. Как субъективная оценка физиологического и психологического состояния, так и результаты выполнения зрительного теста показали более выраженные положительные сдвиги под влиянием ЭЭГ биоуправления по сравнению со случаями тренировки вариабельности сердечного ритма. Значительное повышение амплитуд в сверхмедленном диапазоне наблюдалось только после ЭЭГ биоуправления.

https://doi.org/10.31857/S0869813923050047
PDF

Литература

Kropotov JD (2022) The enigma of infra-slow fluctuations in the human EEG. Front Hum Neurosci 16: 928410. https://doi.org/10.3389/fnhum.2022.928410

Аладжалова HA (1956) Сверхмедленные ритмические изменения электрического потенциала головного мозга. Биофизика 1956 (2): 127–136. [Aladjalova NA (1956) Infra-slow rhythmic changes of the brain electrical potential. Biophysica 1: 127–136. (In Russ)].

Аладжалова HA (1962) Медленные электрические процессы в головном мозге. Москва. Изд-во АН СССР. [Aladjalova NA (1962) Slow electrical processes in the brain. Moscow. Publ House Acad SciUSSR. (In Russ)].

Аладжалова HA (1979) Психофизиологические аспекты сверхмедленной ритмической активности головного мозга. Москва Наука. [Aladjalova NA (1979) Psychophysiological Aspects of Brain Infra-Slow Rhythmical Activity. Moscow. Nauka. (In Russ)].

De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting-state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29: 1359–1367. https://doi.org/10.1016/j.neuroimage.2005.08.035

Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, Kaila K (2004) Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc Natl Acad Sci U S A 101: 5053–5057. https://doi.org/10.1073/pnas.0305375101

Van Putten MJAM, Tjepkema-Cloostermans MC, Hofmeijer J (2015) Infraslow EEG activity modulates cortical excitability in postanoxic encephalopathy. J Neurophysiol 113: 3256–3267. https://doi.org/10.1152/jn.00714.2014

Илюхина ВА (1977) Медленные биоэлектрические процессы головного мозга человека. Ленинград. Наука. [Ilyukhina VA (1977) Slow Bioelectrical Processes of the Brain. Leningrad. Science. (In Russ)].

Илюхина ВА (1986) Нейрофизиология функциональных состояний человека. Ленинград Наука. [Ilyukhina VA (1986) Neurophysiology of human functional states. Leningrad. Science. (In Russ)].

Nikulin VV, Fedele T, Mehnert J, Lipp A, Noack C, Steinbrink J, Curio G (2014) Monochromatic ultra-slow (~0.1 Hz) oscillations in the human electroencephalogram and their relation to hemodynamics. Neuroimage 97: 71–80. https://doi.org/10.1016/j.neuroimage.2014.04.008

Rayshubskiy A, Wojtasiewicz TJ, Mikell CB, Bouchard MB, Timerman D, Youngerman BE, McGovern RA, Otten ML, Canoll P, McKhann GM, Hillman EMC (2014). Direct, intraoperative observation of ~0.1Hz hemodynamic oscillations in awake human cortex: Implications for fMRI. Neuroimage 87: 323–331. https://doi.org/10.1016/j.neuroimage.2013.10.044

Egorova N, Veldsman M, Cumming T, Brodtmann A (2017) Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression. Neuroimage Clin 16: 116–124. https://doi.org/10.1016/j.nicl.2017.07.014

Palva JM, Palva S (2012) Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level- dependent signals, and psychophysical time series. Neuroimage 62: 2201– 2211. https://doi.org/10.1016/j.neuroimage.2012.02.060

Pfurtscheller G, Schwerdtfeger A, Seither-Preisler A, Brunner C, Aigner CS, Brito J, Carmo MP, Andrade A (2017) Brain–heart communication: Evidence for “central pacemaker” oscillations with a dominant frequency at 0.1Hz in the cingulum. Clin Neurophysiol 128: 183–193. https://doi.org/10.1016/j.clinph.2016.10.097

Noordmans HJ, van Blooijs D, Siero JCW, Zwanenburg JJM, Klaessens JHGM, Ramsey NF (2018) Detailed view on slow sinusoidal, hemodynamic oscillations on the human brain cortex by Fourier transforming oxy/deoxy hyperspectral images. Hum Brain Mapp 39: 3558–3573. https://doi.org/10.1002/hbm.24194

Lorincz ML, Kekesi KA, Juhasz G, Crunelli V, Hughes SW (2009) Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63: 683–696. https://doi.org/10.1016/j.neuron.2009.08.012

Low MD, Swift SJ (1971) The contingent negative variation and the "resting" D.C. potential of the human brain: effects of situational anxiety. Neuropsychologia 9: 203–208. https://doi.org/10.1016/0028-3932(71)90044-3

Broyd SJ, Helps SK, Sonuga-Barke EJ (2011) Attention-induced deactivations in very low-frequency EEG oscillations: differential localization according to ADHD symptom status. PLoS One 6: e17325. https://doi.org/10.1371/journal.pone.0017325

Meda SA, Wang Z, Ivleva EI, Poudyal G, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA, Schretlen DJ, Calhoun VD, Lui S, Damaraju E, Pearlson GD (2015) Frequency-Specific Neural Signatures of Spontaneous Low-Frequency Resting-State Fluctuations in Psychosis: Evidence From Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Consortium. Schizophr Bull 41: 1336–1348. https://doi.org/10.1093/schbul/sbv064

Guo X, Chen H, Long Z, Duan X, Zhang Y, Chen H (2017) Atypical developmental trajectory of local spontaneous brain activity in autism spectrum disorder. Sci Rep 7: 39822. https://doi.org/10.1038/srep39822

Reid PD, Daniels B, Rybak M, Turnier-Shea Y, Pridmore S (2002) Cortical excitability of psychiatric disorders: reduced post-exercise facilitation in depression compared to schizophrenia and controls. Aust N Z J Psychiatry 36: 669–673. https://doi.org/10.1046/j.1440-1614.2002.01082.x

Badawy RA, Loetscher T, Macdonell RA, Brodtmann A (2012) Cortical excitability and neurology: insights into the pathophysiology. Funct Neurol 27: 131–145.

Tommasin S, Mascali D, Gili T, Eid Assan I, Moraschi M, Fratini M, Wise RG, Macaluso E, Mangia S, Giove F (2017) Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network. Front Phys 5: 31. https://doi.org/10.3389/fphy.2017.00031

Othmer S, Othmer SF, Legarda S (2011) Clinical neurofeedback: Training brain behavior. Treatment strategies. Pediatr Neurol Psych 2: 67–73.

Othmer S, Othmer SF (2009). Post-traumatic stress disorder – the neurofeedback remedy. Biofeedback 37(1): 24–31. https://doi.org/10.5298/1081-5937-37.1.24

Othmer S, Othmer SF (2016) Infra-low frequency neurofeedback for optimum performance. Biofeedback 44(2): 81–89. https://doi.org/10.5298/1081-5937-44.2.07

Legarda SB, McMahon D, Othmer S, Othmer S (2011) Clinical neurofeedback: Case studies, proposed mechanism, and implications for pediatric neurology practice. J Child Neurol 26(8): 1045–1051. https://doi.org/10.1177/0883073811405052.

Grin-Yatsenko VA, Othmer S, Ponomarev VA, Evdokimov SA, Konoplev YY, Kropotov JD (2018) Infra-low frequency neurofeedback in depression: Three case studies. Neuroregulation 5: 30–42. https://doi.org/10.15540/nr.5.1.30

Grin-Yatsenko VA, Kropotov JD (2020) Effect of Infra-Low Frequency (ILF) Neurofeedback on the Functional State of the Brain in Healthy and Depressed Individuals. In: HW Kirk (ed) Restoring the Brain Neurofeedback as an Integrative Approach to Health. https://doi.org/10.4324/9780429275760

Grin-Yatsenko VA, Kara O, Evdokimov SA, Gregory M, Othmer S, Kro­potov JD (2020) Infra-Low Frequency Neuro Feedback Modulates Infra-Slow Oscillations of Brain Po­tentials: A Controlled Study. J Biomed Eng 4: 1–11. https://doi.org/10.17303/jber.2020.4.104

Dobrushina OR, Vlasova RM, Rumshiskaya AD, Litvinova LD, Mershina EA, Sinitsyn VE, Pechenkova EV (2020) Modulation of Intrinsic Brain Connectivity by Implicit Electroencephalographic Neurofeedback. Front Hum Neurosci 14(192): 1–13. https://doi.org/10.3389/fnhum.2020.00192.

Othmer SF (2017) The Protocol guide for neurofeedback clinicians. 6th ed. Los Angeles, CA. EEG Info.

Kropotov J (2009) Quantitative EEG, event-related potentials, and Neurotherapy. San Diego, CA. Acad Press/Elsevier. https://doi.org/10.1016/B978-0-12-374512-5.X0001-1

Vigario RN (1997) Extraction of ocular artifacts from EEG using independent component analysis. Electroencephalogr Clin Neurophysiol 103: 395–404. https://doi.org/10.1016/S0013-4694(97)00042-8

Jung TP, Makeig S, Westerfeld M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111: 1745–1758. https://doi.org/10.1016/S1388-2457(00)00386-2

Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72: 184–187. https://doi.org/10.1016/0013-4694(89)90180-6

Perrin F, Pernier J, Bertrand O, Echallier JF (1990) Spherical splines for scalp potential and current density mapping. Corrigenda EEG 02274. Electroencephalogr Clin Neurophysiol 76: 565. https://doi.org/10.1016/0013-4694(89)90180-6

Kayser J, Tenke CE (2006) Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clin Neurophysiol 117: 348–368. https://doi.org/10.1016/j.clinph.2005.08.034

Kayser J, Tenke CE (2006b) Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates. Clin Neurophysiol 117: 369–380. https://doi.org/10.1016/j.clinph.2005.08.033

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1): 177-190. https://doi.org/10.1016/j.jneumeth.2007.03.024

Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: Open-source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 156869. https://doi.org/10.1155/2011/156869

Helps S, James C, Debener S, Karl A, Sonuga-Barke EJ (2008) Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention. J Neural Transm (Vienna) 115(2): 279–285. https://doi.org/10.1007/s00702-007-0825-2