БЕЛОК YB-1 ПРЕДОТВРАЩАЕТ ВОЗРАСТНОЕ СНИЖЕНИЕ УРОВНЯ ЭСТРАДИОЛА В ПЛАЗМЕ КРОВИ У ТРАНСГЕННЫХ СТАРЕЮЩИХ САМОК МЫШЕЙ 5XFAD
PDF

Ключевые слова

эстрадиол
старение
YB-1
5xFAD
интерлейкины

Как цитировать

Жданова, Д. Ю., Ковалев, В. И., Чаплыгина, А. В., Бобкова, Н. В., Полтавцева, Р. А., & Сухих, Г. Т. (2022). БЕЛОК YB-1 ПРЕДОТВРАЩАЕТ ВОЗРАСТНОЕ СНИЖЕНИЕ УРОВНЯ ЭСТРАДИОЛА В ПЛАЗМЕ КРОВИ У ТРАНСГЕННЫХ СТАРЕЮЩИХ САМОК МЫШЕЙ 5XFAD. Российский физиологический журнал им. И. М. Сеченова, 109(2), 163–177. https://doi.org/10.31857/S0869813923020103

Аннотация

Болезнь Альцгеймера (БА) представляет собой неизлечимое нейродегенеративное заболевание, которое является основной причиной деменции в пожилом возрасте. При поиске новых методов лечения БА было обращено внимание на мультифункциональный Υ-бокс-связывающий белок 1 (YB-1). Ранее нами было выявлено положительное влияние интраназального введения YB-1 на обучение и пространственную память наряду со снижением содержания церебрального β-амилоида и интенсивности бляшкообразования, с улучшением выживаемости нейронов в коре и гиппокампе самцов мышей, моделирующих БА. Однако БА в 2 раза чаще развивается у женщин по сравнению с мужчинами, поэтому большой интерес представляет изучение эффектов YB-1 на стареющих самках. Эстрогены и андрогены необходимы для сохранения когнитивной функции в процессе старения и, по-видимому, могут препятствовать развитию БА. В данной работе изучали периферические уровни эстрадиола и цитокинов после интраназального введения YB-1 стареющим самкам трансгенных мышей 5XFAD и контрольным нетрансгенным животным. У интактных стареющих животных обеих групп выявлено нарушение эстрального цикла и снижение уровня эстрадиола в плазме крови. У мышей, которым вводили YB-1, не наблюдалось характерного возрастного снижения уровня эстрадиола в плазме. Введение YB-1 не влияло на периферический уровень цитокинов. Таким образом, показан новый, ранее не описанный эффект YB-1 на уровень эстрадиола в плазме у стареющих самок мышей. Эти данные указывают на то, что YB-1 может быть перспективным соединением в профилактике и лечении нейродегенеративных заболеваний. Тем не менее, необходимы дальнейшие эксперименты, чтобы получить представление о подробных механизмах действия YB-1.

https://doi.org/10.31857/S0869813923020103
PDF

Литература

Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep 67: 195–203. https://doi.org/10.1016/j.pharep.2014.09.004

Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M (2003) The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 25: 691–698. https://doi.org/10.1002/bies.10300

Skabkin MA, Evdokimova V, Thomas AA, Ovchinnikov LP (2001) The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J Biol Chem 276: 44841–44847. https://doi.org/10.1074/jbc.m107581200

Skabkin MA, Kiselyova OI, Chernov KG, Sorokin AV, Dubrovin EV, Yaminsky IV, Vasiliev VD, Ovchinnikov LP (2004) Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res 32: 5621–5635. https://doi.org/10.1093/nar/gkh889

Frye BC, Halfter S, Djudjaj S, Muehlenberg P, Weber S, Raffetseder U, En-Nia A, Knott H, Baron JM, Dooley S, Bernhagen J, Mertens PR (2009) Y-box protein-1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep 10: 783–789. https://doi.org/10.1038/embor.2009.81

Moiseeva NI, Stromskaya TP, Rybalkina EY, Vaiman AV, Malyshkina MA, Kim ER, Eliseeva IA, Kulakovskiy IV, Ovchinnikov LP, Stavrovskaya AA (2013) Effects of extracellular YB-1 protein on cultured cells of human breast cancer. Biochem Suppl Ser A Membr Cell Biol 7: 21–28.

Fotovati A, Abu-Ali S, Wang P-S, Deleyrolle LP, Lee C, Triscott J, Chen JY, Franciosi S, Nakamura Y, Sugita Y, Uchiumi T, Kuwano M, Leavitt BR, Singh SK, Jury A, Jones C, Wakimoto H, Reynolds BA, Pallen CJ, Dunn SE (2011) YB-1 bridges neural stem cells and brain tumor-initiating cells via its roles in differentiation and cell growth. Cancer Res 71: 5569–5578. https://doi.org/10.1158/0008-5472.CAN-10-2805

Lu ZH, Books JT, Ley TJ (2005) YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Mol Cell Biol 25: 4625–4637. https://doi.org/10.1128/MCB.25.11.4625-4637.2005

Hanssen L, Frye B, Ostendorf T, Alidousty C, Djudjaj S, Boor P, Rauen T, Floege J, Mertens P, Raffetseder U (2011) Y-Box Binding Protein-1 Mediates Profibrotic Effects of Calcineurin Inhibitors in the Kidney. J Immunol 187: 298–308. https://doi.org/10.4049/jimmunol.1100382

Bobkova NV, Lyabin DN, Medvinskaya NI, Samokhin AN, Nekrasov PV, Nesterova I V, Aleksandrova IY, Tatarnikova OG, Bobylev AG, Vikhlyantsev IM, Kukharsky MS, Ustyugov AA, Polyakov DN, Eliseeva IA, Kretov DA, Guryanov SG, Ovchinnikov LP (2015) The Y-Box Binding Protein 1 Suppresses Alzheimer’s Disease Progression in Two Animal Models. PLoS One 10: e0138867. https://doi.org/10.1371/journal.pone.0138867

Henderson VW, Paganini-Hill A, Miller BL, Elble RJ, Reyes PF, Shoupe D, McCleary CA, Klein RA, Hake AM, Farlow MR (2000) Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 54(2): 295–301. https://doi.org/10.1212/WNL.54.2.295

Vest RS, Pike CJ (2013) Gender, sex steroid hormones, and Alzheimer’s disease. Horm Behav 63: 301–307. https://doi.org/10.1016/j.yhbeh.2012.04.006

Grimm A, Lim Y-A, Mensah-Nyagan AG, Götz J, Eckert A (2012) Alzheimer’s Disease, Oestrogen and Mitochondria: an Ambiguous Relationship. Mol Neurobiol 46: 151–160. https://doi.org/10.1007/s12035-012-8281-x

Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, Bryan RN (1998) Sex Differences in Brain Aging: A Quantitative Magnetic Resonance Imaging Study. Arch Neurol 55: 169–179. https://doi.org/10.1001/archneur.55.2.169

Morinaga A, Ono K, Takasaki J, Ikeda T, Hirohata M, Yamada M (2011) Effects of sex hormones on Alzheimer’s disease-associated β-amyloid oligomer formation in vitro. Exp Neurol 228: 298–302. https://doi.org/10.1016/j.expneurol.2011.01.011

Veiga S, Melcangi RC, DonCarlos LL, Garcia-Segura LM, Azcoitia I (2004) Sex hormones and brain aging. Exp Gerontol 39: 1623–1631. doi:10.1016/j.exger.2004.05.008

Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer’s disease. Front Biosci Elit 4 E: 976–997. https://doi.org/10.2741/e434

Maioli S, Leander K, Nilsson P, Nalvarte I (2021) Estrogen receptors and the aging brain. Essays Biochem 65: 913–925. https://doi.org/10.1042/EBC20200162

Chen P, Li B, Ou-Yang L (2022) Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 13: 839005. https://doi.org/10.3389/fendo.2022.839005

Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM (2001) Estrogen receptor α, not β, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 98: 1952–1957. doi:10.1073/pnas.041483198

Pérez SE, Chen EY, Mufson EJ (2003) Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Dev Brain Res 145: 117–139. doi:10.1016/S0165-3806(03)00223-2

Hazell GGJ, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Lolait SJ (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202: 223–236. doi:10.1677/JOE-09-0066

Luoma JI, Boulware MI, Mermelstein PG (2008) Caveolin proteins and estrogen signaling in the brain. Mol Cell Endocrinol 290: 8–13. https://doi.org/10.1016/j.mce.2008.04.005

Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4): 833–842. https://doi.org/10.1210/me.2004-0486

Gordon JL, Peltier A, Grummisch JA, Sykes Tottenham L (2019) Estradiol fluctuation, sensitivity to stress, and depressive symptoms in the menopause transition: a pilot study. Front Psychol 10: 1319. https://doi.org/10.3389/fpsyg.2019.01319

Carugno J (2020) Clinical management of vaginal bleeding in postmenopausal women. Climacteric 23(4): 343–349. https://doi.org/10.1080/13697137.2020.1739642

Mueck AO, Römer T (2019) Choice of progestogen for endometrial protection in combination with transdermal estradiol in menopausal women. Horm Mol Biol Clin Invest 37(2). https://doi.org/10.1515/hmbci-2018-0033

Duarte-Guterman P, Lieblich SE, Chow C, Galea LAM (2015) Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats. PLoS One 10: e0129880. https://doi.org/10.1371/journal.pone.0129880

Aenlle K, Cui L, Jackson T, Foster T (2007) Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiol Aging 30: 932–945. https://doi.org/10.1016/j.neurobiolaging.2007.09.004

Fan L, Zhao Z, Orr PT, Chambers CH, Lewis MC, Frick KM (2010) Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation. J Neurosci 30: 4390–4400. https://doi.org/10.1523/JNEUROSCI.4333-09.2010

Walf AA, Paris JJ, Frye CA (2009) Chronic estradiol replacement to aged female rats reduces anxiety-like and depression-like behavior and enhances cognitive performance. Psychoneuroendocrinology 34(6): 909–916. https://doi.org/10.1016/j.psyneuen.2009.01.004

Cui J, Reed J, Crynen G, Ait-Ghezala G, Crawford F, Shen Y, Li R (2019) Proteomic Identification of Pathways Responsible for the Estradiol Therapeutic Window in AD Animal Models. Front Cell Neurosci 13: 437. https://doi.org/10.3389/fncel.2019.004

Sahab-Negah S, Hajali V, Moradi HR, Gorji A (2020) The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer’s Disease. Cell Mol Neurobiol 40: 283–299. https://doi.org/10.1007/s10571-019-00733-0

Cardinali CAEF, Martins YA, Torrão AS (2021) Use of Hormone Therapy in Postmenopausal Women with Alzheimer’s Disease: A Systematic Review. Drugs Aging 38: 769–791. https://doi.org/10.1007/s40266-021-00878-y

Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammat 8: 26. https://doi.org/10.1186/1742-2094-8-26

Ferreira ST, Clarke JR, Bomfim TR, De Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement 10: S76–S83. https://doi.org/10.1016/j.jalz.2013.12.010

Walters A, Phillips E, Zheng R, Biju M, Kuruvilla T (2016) Evidence for neuroinflammation in Alzheimer’s disease. Prog Neurol Psychiatry 20: 25–31. https://doi.org/10.1002/pnp.444

Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernández J, Campos-Peña V (2013) Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci 7: 59. https://doi.org/10.3389/fnint.2013.00059

Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper N, Eikelenboom P, Emmerling M, Fiebich B, Finch C, Frautschy S, Griffin W, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie I, Mcgeer P, O’Banion M, Pachter J, Pasinetti G, Plata-salamán C, Rogers J, Rydel R, Yong Shen, Streit W, Strohmeyer R, Tooyoma Ikuo, Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B., Wenk G, Wyss–Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3): 383–421. https://doi.org/10.1016/S0197-4580(00)00124-X

O’Léime C, Cryan J, Nolan Y (2017) Nuclear Deterrents: Intrinsic Regulators of IL-1β-induced Effects on Hippocampal Neurogenesis. Brain Behav Immun 66: 394–412. https://doi.org/10.1016/j.bbi.2017.07.153

Khaksari M, Soltani Z, Shahrokhi N (2018) Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 9:393–416. https://doi.org/10.1007/s12975-017-0588-5

Wang M, Tsai BM, Reiger KM, Brown JW, Meldrum DR (2006) 17-β-Estradiol decreases p38 MAPK-mediated myocardial inflammation and dysfunction following acute ischemia. J Mol Cell Cardiol 40(2): 205–212. https://doi.org/10.1016/j.yjmcc.2005.06.019

Cuzzocrea S, Santagati S, Sautebin L, Mazzon E, Calabrò G, Serraino I, Caputi AP, Maggi A (2000) 17β-estradiol antiinflammatory activity in carrageenan-induced pleurisy. Endocrinology 141(4): 1455–1463. https://doi.org/10.1210/endo.141.4.7404

Borrás C, Gambini J, López-Grueso R, Pallardó FV, Viña J (2010) Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta (BBA)-Mol Basis Disease 1802(1): 205–211. https://doi.org/10.1016/j.bbadis.2009.09.007

Oakley HO, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal β-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer’s Disease Mutations: Potential Factors in Amyloid Plaque Formation. J Neurosci 26: 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

McLean AC, Valenzuela N, Fai S, Bennett SAL (2012) Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp e4389. https://doi.org/10.3791/4389

Farré M, Kuster M, Brix R, Rubio F, de Alda MJL, Barceló D (2007) Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography–tandem mass spectrometry, and ultra performance liquid chromatography–quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples. J Chromatogr A 1160(1-2): 166–175. https://doi.org/10.1016/j.chroma.2007.05.032

Nilsson ME, Vandenput L, Tivesten Å, Norlén A-K, Lagerquist MK, Windahl SH, Börjesson AE, Farman HH, Poutanen M, Benrick A, Maliqueo M, Stener-Victorin E, Ryberg H, Ohlsson C (2015) Measurement of a Comprehensive Sex Steroid Profile in Rodent Serum by High-Sensitive Gas Chromatography-Tandem Mass Spectrometry. Endocrinology 156: 2492–2502. https://doi.org/10.1210/en.2014-1890

Evgen’ev M, Bobkova N, Krasnov G, Garbuz D, Funikov S, Kudryavtseva A, Kulikov A, Samokhin A, Maltsev A, Nesterova I (2019) The Effect of Human HSP70 Administration on a Mouse Model of Alzheimer’s Disease Strongly Depends on Transgenicity and Age. J Alzheimer’s Dis 67: 1391–1404. https://doi.org/10.3233/JAD-180987

Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, Pike CJ (2007) Progesterone and Estrogen Regulate Alzheimer-Like Neuropathology in Female 3xTg-AD Mice. J Neurosci 27(48): 13357–13365. https://doi.org/10.1523/JNEUROSCI.2718-07.2007

Yun J, Jun I, Ju C, Choi D, Im H, Youg J (2018) Brain , Behavior, and Immunity Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-ĸB activation in ovariectomized mice. Brain Behav Immun 73: 282–293. https://doi.org/10.1016/j.bbi.2018.05.013

Murphy DD, Segal M (1997) Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci U S A 94(4): 1482–1487. https://doi.org/10.1073/pnas.94.4.1482

Aenlle KK, Foster TC (2010) Aging alters the expression of genes for neuroprotection and synaptic function following acute estradiol treatment. Hippocampus 20: 1047–1060. https://doi.org/10.1002/hipo.20703

Nilsen J, Chen S, Irwin RW, Iwamoto S, Brinton RD (2006) Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci 7(1): 1–14. https://doi.org/10.1186/1471-2202-7-74

Yao J, Brinton RD (2012) Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer’s disease. Advance Pharmacol 64: 327–371. https://doi.org/10.1016/B978-0-12-394816-8.00010-6

Donaubauer EM, Hunzicker-Dunn ME (2016) Extracellular Signal-regulated Kinase (ERK)-dependent Phosphorylation of Y-Box-binding Protein 1 (YB-1) Enhances Gene Expression in Granulosa Cells in Response to Follicle-stimulating Hormone (FSH). J Biol Chem 291: 12145–12160. https://doi.org/10.1074/jbc.M115.705368

Kim JY, Mo H, Kim J, Kim JW, Nam Y, Rim YA, Ju JH (2022) Mitigating Effect of Estrogen in Alzheimer’s Disease-Mimicking Cerebral Organoid. Front Neurosci 16: 816174. https://doi.org/10.3389/fnins.2022.816174

Boza-Serrano A, Yang Y, Paulus A, Deierborg T (2018) Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer’s disease mouse model 5xFAD. Sci Rep 8: 1550. https://doi.org/10.1038/s41598-018-19699-y

Hanzel CE, Pichet-Binette A, Pimentel LSB, Iulita MF, Allard S, Ducatenzeiler A, Do Carmo S, Cuello AC (2014) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35: 2249–2262. https://doi.org/10.1016/j.neurobiolaging.2014.03.026

López-González I, Schlüter A, Aso E, Garcia-Esparcia P, Ansoleaga B, Lorens F, Carmona M, Moreno J, Fuso A, Portero-Otin M, Pamplona R, Pujol A, Ferrer I (2015) Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 74: 319–344. https://doi.org/10.1097/NEN.0000000000000176

Jiang Y, Li K, Li X, Xu L, Yang Z (2021) Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem-Biol Interact 341: 109452. https://doi.org/10.1016/j.cbi.2021.109452

Park J-C, Han S-H, Mook-Jung I (2020) Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep 53: 10–19. https://doi.org/10.5483/BMBRep.2020.53.1.309

Forlenza OV, Diniz BS, Talib LL, Mendonça VA, Ojopi EB, Gattaz WF, Teixeira A L (2009) Increased serum IL-1β level in Alzheimer’s disease and mild cognitive impairment. Dementia and geriatric cognitive disorders 28(6): 507–512. https://doi.org/10.1159/000255051

Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatr 68(10): 930–941. https://doi.org/10.1016/j.biopsych.2010.06.012

Wu YY, Hsu JL, Wang HC, Wu SJ, Hong CJ, Cheng IHJ (2015) Alterations of the neuroinflammatory markers IL-6 and TRAIL in Alzheimer's disease. Dement Geriatr Cogn Dis Extra 5(3): 424–434. https://doi.org/10.1159/000439214

Richartz E, Stransky E, Batra A, Simon P, Lewczuk P, Buchkremer G, Bartels M, Schott K (2005) Decline of immune responsiveness: a pathogenetic factor in Alzheimer’s disease? J Psychiatr Res 39(5): 535–543. https://doi.org/10.1016/j.jpsychires.2004.12.005