ЛАКТАТ: НОВЫЙ ВЗГЛЯД НА РОЛЬ ЭВОЛЮЦИОННО ДРЕВНЕГО МЕТАБОЛИТА
PDF

Ключевые слова

лактат
молочная кислота
гликолиз
канцерогенез
злокачественные опухоли
эволюционная онкология

Как цитировать

Шатова, О. П., Шегай, П. В., Заболотнева, А. А., Шестопалов, А. В., & Каприн, А. Д. (2022). ЛАКТАТ: НОВЫЙ ВЗГЛЯД НА РОЛЬ ЭВОЛЮЦИОННО ДРЕВНЕГО МЕТАБОЛИТА. Российский физиологический журнал им. И. М. Сеченова, 108(12), 1575–1591. https://doi.org/10.31857/S0869813922120111

Аннотация

В статье представлен новый взгляд на роль лактата в организме человека. Показано, что лактат имеет как положительные, так и отрицательные эффекты, которые зависят от его концентрации. Установлено, что концентрация лактата до 15 мМ является оптимальной для реализации положительных эффектов данной молекулы. К положительным эффектам лактата можно отнести его участие в регенерации тканей, сохранении целостности нейронов при снижении уровня глюкозы, стимуляцию катаболизма аденозина и, как следствие, уменьшение опухолевой иммуносупрессии, обеспечение стволового фенотипа клеток. Отрицательные эффекты для лактата регистрируются при его концентрации выше 15мМ. К отрицательным эффектам можно отнести активацию лактатом катаболизма гиалуроновой кислоты и ремоделирование внеклеточного матрикса, стимуляцию образования опухолевых экзосом, обеспечение пролиферации опухолевых клеток, а также подавление иммунного ответа. Именно лактат является предшественником для многих метаболитов цикла трикарбоновых кислот в опухоли, часть из которых является онкометаболитами. Возможно, что гиперпродукция лактата опухолью является не только проявлением агрессии, но и адаптивной реакцией со стороны клеток опухолевого микроокружения, которое таким образом регулирует работу генов-мишеней, вызывая целый каскад метаболических и физиологических событий.

https://doi.org/10.31857/S0869813922120111
PDF

Литература

Brooks GA (2020) Lactate as a fulcrum of metabolism. Redox Biol 35: 101454. https://doi.org/ 10.1016/j.redox.2020.101454

Rawat D, Chhonker SK, Naik RA, Mehrotra A, Trigun SK, Koiri RK (2019) Lactate as a signaling molecule: Journey from dead end product of glycolysis to tumor survival. Front Biosci - Landmark 24: 366–381. https://doi.org/10.2741/4723

Lewis BC, Prescott JE, Campbell SE, Shim H, Orlowski RZ, Dang CV (2000) Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res 60: (21):6178–6183.

Ralser M (2018) An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life: Ralser M (2018) An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem J 475(16): 2577–2592. https://doi.org/10.1042/BCJ20160866

Alfarouk KO, Muddathir AK, Shayoub MEA (2011) Tumor acidity as evolutionary spite. Cancers (Basel) 3(1): 408–414.

Hollander N, Urszula Zakrzewska M, Hyun Kang T, Daniels-Wells TR, Penichet ML, Sum Leoh L, Sdn Bhd R, Jaya S, Candelaria P (2021) Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-cancer Agents. Front Immunol 12: 607692. https://doi.org/10.3389/fimmu.2021.607692

Carvalho Nuno Gueiral Elisabete Nogueira Rui Henrique Luís Oliveira Valery Tuchin Sónia Carvalho S v, Gueiral N, Nogueira E, Henrique R, Oliveira L, Carvalho S, Tuchin V (2017) Glucose diffusion in colorectal mucosa-a comparative study between normal and cancer tissues. J Biomed Opt 22(9): 91506. https://doi.org/10.1117/1.JBO.22.9.091506

Yaman M, Kaya G, Simsek M (2007) Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues. Int J Gynecol Cancer 17(1): 220–228. https://doi.org/10.1111/j.1525-1438.2006.00742.x

Dimri M, Varacallo M (2022) Biochemistry, Aerobic Glycolysis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publ.

Wu Z, Wu J, Zhao Q, Fu S, Jin J (2020) Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 22(5): 631–646. https://doi.org/10.1007/s12094-019-02187-8

Nowak N, Kulma A, Gutowicz J (2018) Up-regulation of key glycolysis proteins in cancer development. Open Life Sci 13: 569–581. https://doi.org/10.1515/biol-2018-0068

Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5): 819–830. https://doi.org/10.1016/j.molcel.2004.11.014

Cieśla M, Mierzejewska J, Adamczyk M, Farrants AKÖ, Boguta M (2014) Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. Biochim Biophys Acta Mol Cell Res 1843(6): 1103–1110. https://doi.org/10.1016/j.bbamcr.2014.02.007

Li M, Zhang CS, Zong Y, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, Jiang D, Li Y, Zhang C, Tian X, Wang W, Yang Y, Chen J, Cui J, Wu YQ, Chen X, Liu QF, Wu J, Lin SY, Ye Z, Liu Y, Piao HL, Yu L, Zhou Z, Xie XS, Hardie DG, Lin SC (2019) Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metab 30(3): 508–524. https://doi.org/10.1016/j.cmet.2019.05.018

Caspi M, Perry G, Skalka N, Meisel S, Firsow A, Amit M, Rosin-Arbesfeld R (2014) Aldolase positively regulates of the canonical Wnt signaling pathway. Mol Cancer 13:164. https://doi.org/10.1186/1476-4598-13-164

Ralser M (2018) An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem J 475(16): 2577–2592. https://doi.org/10.1042/BCJ20160866.

Shatova OP, Borzenko BG, Zinkovich II, Sedakov IE (2009) Lactate dehydrogenase, adenosine deaminase and thymidine phosphorylase activity of blood and tissues in breast cancer. Ukrain biokhim zhurn 81(4): 88–93.

Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: An intriguing mode of multitasking. Biochim Biophys Acta Mol Cell Res 1803(4): 520–525. https://doi.org/10.1016/j.bbamcr.2010.01.022

Shegay PV, Zabolotneva AA, Shatova OP, Shestopalov AV, Kaprin AD (2022) Evolutionary View on Lactate-Dependent Mechanisms of Maintaining Cancer Cell Stemness and Reprimitivization. Cancers (Basel) 14: 4552. https://doi.org/10.3390/cancers14194552

Vaupel P, Schmidberger H, Mayer A (2019) The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 95(7): 912–919. https://doi.org/10.1080/09553002.2019.1589653

Warburg O (1956) Injuring of Respiration the Origin of Cancer Cells. Science (1979) 123(3191): 309–414. https://doi.org/10.1126/science.123.3191.309

Porporato PE, Pouyssegur J, Rumjanek FD, Baltazar F, Afonso J, Costa M, Granja S (2020) Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front Oncol 10: 231. https://doi.org/10.3389/fonc.2020.00231

Jacobo-Herrera NJ, Nacional I, Médicas C, Zubirán NS, Lisanti MP, Lang L, Manzo-Merino J, de La Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A (2019) Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front Oncol 9: 1143. https://doi.org/10.3389/fonc.2019.01143

Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP (2022) Lactate in contemporary biology: a phoenix risen. J Physiol 600(5): 1229–1251. https://doi.org/10.1113/JP280955

Llibre A, Grudzinska FS, O’Shea MK, Duffy D, Thickett DR, Mauro C, Scott A (2021) Lactate crosstalk in host-pathogen interactions. Biochem J 478(17): 3157–3178. https://doi.org/10.1042/BCJ20210263

Coventry BJ, Henneberg M (2021) The Immune System and Responses to Cancer: Coordinated Evolution. F1000Res 4: 552. https://doi.org/10.12688/f1000research.6718.3

Szekeres-Bartho J, Laszlo Kovacs G, Gabor Than N, Liao A-H, Ma L-N, Huang X-B, Muyayalo KP, Mor G (2020) Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Front Immunol 11: 279. https://doi.org/10.3389/fimmu.2020.00279

Wang JX, Choi SYC, Niu X, Kang N, Xue H, Killam J, Wang Y Lactic Acid and an Acidic Tumor Microenvironment suppress Anticancer Immunity. Mol Sci 21(21): 8363. https://doi.org/10.3390/ijms21218363

Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J, Hu X (2012) Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 227(2): 189–199. https://doi.org/10.1002/path.3978

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ (2017) Lactate Metabolism in Human Lung Tumors. Cell 171(2): 358–371. https://doi.org/10.1016/j.cell.2017.09.019

Fan TWM, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, Miller DM (2009) Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM). Mol Cancer 8: 41. https://doi.org/10.1186/1476-4598-8-41

Bok R, Lee J, Sriram R, Keshari K, Sukumar S, Daneshmandi S, Korenchan DE, Flavell RR, Vigneron DB, Kurhanewicz J, Seth P (2019) The role of lactate metabolism in prostate cancer progression and metastases revealed by dual-agent hyperpolarized 13 C MRSI. Cancers (Basel) 11(2): 257. https://doi.org/10.3390/cancers11020257

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. https://doi.org/10.1073/pnas.0709747104

Pérez-Escuredo J, Dadhich RK, Dhup S, Cacace A, van Hée VF, de Saedeleer CJ, Sboarina M, Rodriguez F, Fontenille MJ, Brisson L, Porporato PE, Sonveaux P (2016) Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15(1):72–83. https://doi.org/10.1080/15384101.2015.1120930

Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) Ketones and lactate “fuel” tumor growth and metastasis. Cell Cycle 9(17): 3506–3514. https://doi.org/10.4161/cc.9.17.12731

Shan T, Chen S, Chen X, Lin WR, Li W, Ma J, Wu T, Cui X, Ji H, Li Y, Kang Y (2017) Oncol Rep 37(4): 1971–1979. https://doi.org/10.3892/or.2017.5479

Kimmelman AC, White E (2017) Autophagy and Tumor Metabolism. Cell Metab 25(5): 1037–1043. https://doi.org/10.1016/j.cmet.2017.04.004

Jiang Y, Han Q, Zhao H, Zhang J (2021) Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res 40(1): 13. https://doi.org/10.1186/s13046-020-01808-3

Brown TP, Ganapathy V (2020) Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 206: 107451. https://doi.org/10.1016/j.pharmthera.2019.107451

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9): 3812–3819. https://doi.org/10.1182/blood-2006-07-035972

Husain Z, Huang Y, Seth P, Sukhatme VP (2013) Tumor-Derived Lactate Modifies Antitumor Immune Response: Effect on Myeloid-Derived Suppressor Cells and NK Cells. J Immunol 191(3): 1486–1495. https://doi.org/10.4049/jimmunol.1202702

Luo Y, Li L, Chen X, Gou H, Yan K, Xu Y (2022) Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol 41(1): 19–29. https://doi.org/10.1080/08830185.2021.1974856

Ivashkiv LB (2020) The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol 20(2): 85–86. https://doi.org/10.1038/s41577-019-0259-8

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Nature 513 (7519): 559–563. https://doi.org/10.1038/nature13490

Sonveaux P, Copetti T, de Saedeleer CJ, Végran F, Verrax J, Kennedy KM, Moon EJ, Dhup S, Danhier P, Frérart F, Gallez B, Ribeiro A, Michiels C, Dewhirst MW, Feron O (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7(3): e33418. https://doi.org/10.1371/journal.pone.0033418

Manoharan I, Prasad PD, Thangaraju M, Manicassamy S (2021) Lactate-Dependent Regulation of Immune Responses by Dendritic Cells and Macrophages. Front Immunol 12: 691134. https://doi.org/10.3389/fimmu.2021.691134

Watson MLJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk A v., Rittenhouse NL, DePeaux K, Whetstone RD, Vignali DAA, Hand TW, Poholek AC, Morrison BM, Rothstein JD, Wendell SG, Delgoffe GM (2021) Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591(7851): 645–651. https://doi.org/10.1038/s41586-020-03045-2

Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L, Wu Z (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36(42): 5829–5839. https://doi.org/10.1038/onc.2017.188

Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H (2019) HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci 20(2): 238. https://doi.org/10.3390/ijms20020238

Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ, Kastenberger M, Kreutz M, Nickl-Jockschat T, Bogdahn U, Bosserhoff AK, Hau P (2009) Neurooncology Lactate promotes glioma migration by TGF-b2-dependent regulation of matrix metalloproteinase-2. Neuro Oncology 11: 368–380. https://doi.org/10.1215/15228517-2008-106

Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, Wang Z, Yuan F, Fox M, Zhang H ge, Guo H, Tieri D, Kong M, Watson CT, Mitchell RA, Zhang X, McMasters KM, Huang J, Yan J (2021) Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab 33(10): 2040–2058. https://doi.org/10.1016/j.cmet.2021.09.002

Walenta S, Mueller-Klieser WF (2004) Lactate: Mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3): 267–274. https://doi.org/10.1016/j.semradonc.2004.04.004

Nadege B, Patrick L, Rodrigue R (2009) Mitochondria: From bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 14(11): 4015–4034. https://doi.org/10.2741/3509

Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277(26): 23111–23115. https://doi.org/10.1074/jbc.M202487200

Ge H, Weiszmann J, Reagan JD, Gupte J, Baribault H, Gyuris T, Chen JL, Tian H, Li Y (2008) Elucidation of signaling and functional activities of an orphan GPCR, GPR81. J Lipid Res 49(4): 797–803. https://doi.org/10.1194/jlr.M700513-JLR200

Roland CL, Arumugam T, Deng D, Liu SH, Philip B, Gomez S, Burns WR, Ramachandran V, Wang H, Cruz-Monserrate Z, Logsdon CD Tumor and Stem Cell Biology Cell Surface Lactate Receptor GPR81 Is Crucial for Cancer Cell Survival. Cancer Res 74(18): 5301–5310. https://doi.org/10.1158/0008-5472.CAN-14-0319

Ishihara S, Hata K, Hirose K, Okui T, Toyosawa S, Uzawa N, Nishimura R, Yoneda T (2022) The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Scient Rep 12: 6261. https://doi.org/10.1038/s41598-022-10143-w

Lee YJ, Shin KJ, Park SA, Park KS, Park S, Heo K, Seo YK, Noh DY, Ryu SH, Suh PG (2016) Supplementary Materials 2016 G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion. Oncotarget 7(43):70898–70911. https://doi.org/10.18632/oncotarget

Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L, Wu Z (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36: 5829–5839. https://doi.org/10.1038/onc.2017.188

Wagner W, Kania KD, Ciszewski WM (2017) Stimulation of lactate receptor (HCAR1) affects cellular DNA repair capacity. DNA Repair (Amst) 52: 49–58. https://doi.org/10.1016/j.dnarep.2017.02.007

Xie Q, Zhu Z, He Y, Zhang Z, Zhang Y, Wang Y, Luo J, Peng T, Cheng F, Gao J, Cao Y, Wei H, Wu Z (2020) A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells. Biochim Biophys Acta Mol Basis Dis 1866(1): 165576. https://doi.org/10.1016/j.bbadis.2019.165576

Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R, Wright SD, Taggart AK, Waters MG (2008) Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun 377(3): 987–991. https://doi.org/10.1016/j.bbrc.2008.10.088

Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ, Roy S, Sen CK (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8): 1115–1124. https://doi.org/10.1089/ars.2007.1674

San-Millán I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38: 119–133. https://doi.org/10.1093/carcin/bgw127

Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, Diget EH, Kennedy LH, Stølen T, Hennestad E, Moldestad O, Cai Y, Puchades M, Offermanns S, Vervaeke K, Bjørås M, Wisløff U, Storm-Mathisen J, Bergersen LH (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8: 15557. https://doi.org/10.1038/ncomms15557

Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30(2): 258–264. https://doi.org/10.1042/bst0300258

Ranganathan P, Shanmugam A, Swafford D, Suryawanshi A, Bhattacharjee P, Hussein MS, Koni PA, Prasad PD, Kurago ZB, Thangaraju M, Ganapathy V, Manicassamy S (2018) GPR81, a Cell-Surface Receptor for Lactate, Regulates Intestinal Homeostasis and Protects Mice from Experimental Colitis. J Immunol 200(5): 1781–1789. https://doi.org/10.4049/jimmunol.1700604

Boitsova EB, Morgun AV., Osipova ED, Pozhilenkova EA, Martinova GP, Frolova OV, Olovannikova RY, Tohidpour A, Gorina YV, Panina YA, Salmina AB (2018) The inhibitory effect of LPS on the expression of GPR81 lactate receptor in blood-brain barrier model in vitro. J Neuroinflammat 15(1): 196. https://doi.org/10.1186/s12974-018-1233-2

Madaan A, Nadeau-Vallée M, Rivera JC, Obari D, Hou X, Sierra EM, Girard S, Olson DM, Chemtob S (2017) Lactate produced during labor modulates uterine inflammation via GPR81 (HCA1). Am J Obstetr Gynecol 216(1): 60.e1–60.e17. https://doi.org/10.1016/j.ajog.2016.09.072

Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ, Hunt TK (2006) Lactate stimulates endothelial cell migration. Wound Repair and Regenerat 14: (3): 321–324. https://doi.org/10.1111/j.1743-6109.2006.00127.x

Wagner S, Hussain MZ, Beckert S, Ghani QP, Weinreich J, Hunt TK, Becker HD, Königsrainer A (2007) Lactate down-regulates cellular poly(ADP-ribose) formation in cultured human skin fibroblasts. Eur J Clin Invest 37(2): 134–139. https://doi.org/10.1111/j.1365-2362.2007.01760.x

Shatova O, Khomutov E, Zynkovich I, Skorobogatova Z, Bogaturova O (2009) Does lactate have an impact on enzyme activity? Eur J Cancer Supplem 7 (2): 100. https://doi.org/10.1016/s1359-6349(09)70339-8

Shatova OP, Butenko EV, Khomutov EV, Kaplun DS, Sedakov IE, Zinkovych II (2016) Metformin impact on purine metabolism in breast cancer. Biomed Khimiya 62(3): 302–305. https://doi.org/10.18097/PBMC20166203302

Lee JW, Ko J, Ju C, Eltzschig HK (2019) Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med 5(6): 1–13. https://doi.org/10.1038/s12276-019-0235-1

Hellstrom KE, Hellstrom I (2019) From the Hellstrom paradox toward cancer cure. Progr Mol Biol and Translat Sci 164: 1–24. https://doi.org/10.1016/bs.pmbts.2018.11.002

Vannucci RC, Brucklacher RM, Vannucci SJ (1996) The Effect of Hyperglycemia on Cerebral Metabolism During Hypoxia-Ischemia in the Immature Rat. J Cereb Blood Flow Metab 16(5): 1026–1033. https://doi.org/10.1097/00004647-199609000-00028

van Gemert LA, Bastiaan, de Galan E, Wevers RA, Rob Ter Heine, Michèl, Willemsen A, de Galan BE, Willemsen MA (2022) Lactate infusion as therapeutical intervention: a scoping review Keywords Sodium lactate. Brain energy metabolism · Therapeutic lactate infusion. Review. Eur J Pediatr 181: 2227–2235. https://doi.org/10.1007/s00431-022-04446-3

Sobieski C, Warikoo N, Shu H-J, Mennerick S (2018) Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation. PLoS One 13(4): e0195520. https://doi.org/10.1371/journal.pone.0195520

Brooks GA (2001) Lactate doesn’t necessarily cause fatigue: why are we surprised? J Physiol 536 (Pt 1): 1. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00001.x

Cairns SP (2006) Lactic Acid and Exercise Performance Culprit or Friend? Sports Med 36(4): 279–291. https://doi.org/10.2165/00007256-200636040-00001

Hallén J (1996) K+ balance in humans during exercise. Acta Physiol Scand 156(3): 279–286. https://doi.org/10.1046/j.1365-201X.1996.187000

Vincenzo De Paoli F, Overgaard K, Pedersen TH, Nielsen OB (2007) Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+. J Physiol 581: 829–839. https://doi.org/10.1113/jphysiol.2007.129049

Polunin G, Sedakov I, Borota O, Shatova O, Borota O (2013) The Influence of Sodium Lactate on Carbohydrates Metabolism in Patients with Inflammatory Bowel Diseases and Colon Cancer. Ann Oncol 24: iv116. https://doi.org/10.1093/annonc/mdt203.283