ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ ПОВРЕЖДАЮЩЕЙ И ПРОТЕКТИВНОЙ ГИПОКСИИ МОЗГА МЛЕКОПИТАЮЩИХ
PDF

Ключевые слова

гипоксия
классификация форм
экспериментальные модели гипоксии/ишемии
гипоксическая толерантность
мозг

Как цитировать

Семенов, Д. Г., Беляков, А. В., & Рыбникова, Е. А. (2022). ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ ПОВРЕЖДАЮЩЕЙ И ПРОТЕКТИВНОЙ ГИПОКСИИ МОЗГА МЛЕКОПИТАЮЩИХ. Российский физиологический журнал им. И. М. Сеченова, 108(12), 1592–1609. https://doi.org/10.31857/S086981392212010X

Аннотация

В настоящее время наблюдается новый всплеск интереса к проблеме гипоксии, почти утраченный в последние десятилетия. В связи с тем, что когорта компетентных специалистов в этой области существенно сократилась, необходимо осуществлять интенсивный обмен знаниями. С целью проинформировать широкий круг заинтересованных исследователей и врачей в настоящем обзоре обобщено современное понимание гипоксии, ее патогенных и адаптогенных последствий, а также ключевых физиологических и молекулярных механизмов, которые реализуют реакцию на гипоксию на различных уровнях - от клеточного до организменного. В обзоре приведена современная классификация форм гипоксии, понимание которой необходимо для формирования научно обоснованного подхода к экспериментальному моделированию гипоксических состояний. Проведен анализ литературы, освещающий историю и современный уровень моделирования гипоксии в экспериментах на млекопитающих животных и человеке, в том числе, способов создания умеренной гипоксии, применяемой для повышения резистентности нервной системы к тяжелым формам гипоксии и другим экстремальным факторам. Отдельное внимание уделяется обсуждению особенностей и ограничений различных подходов к созданию гипоксии, а также раскрытию потенциала практического применения умеренных гипоксических воздействий в лечебной и профилактической медицине.

https://doi.org/10.31857/S086981392212010X
PDF

Литература

Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K (1990) 'Ischemic tolerance' phenomenon found in the brain. Brain Res 528:21–24. https://doi.org/10.1016/0006-8993(90)90189-i

Barros L, San Martín A, Ruminot I, Sandoval P, Baeza-Lehnert F, Arce-Molina R, Rauseo D, Contreras-Baeza Y, Galaz A, Valdivia S (2020) Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate. Neurochem Res 45:1328–1334. https://doi.org/10.1007/s11064-020-03005-2

López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera M, Pardal R, Ortega-Sáenz P (2016) Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 310: C629–C642. https://doi.org/10.1152/ajpcell.00265.2015

Lindsey B, Nuding S, Segers L, Morris K (2018) Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda Md) 33:281–297. https://doi.org/10.1152/physiol.00014.2018

Dempsey J, Morgan B (2015) Humans In Hypoxia: A Conspiracy Of Maladaptation?! Physiology (Bethesda Md) 30:304–316. https://doi.org/10.1152/physiol.00007.2015

Евсеева М, Евсеев А, Правдивцев В, Шабанов П (2008) Механизмы развития острой гипоксии и пути ее фармакологической коррекции. Обзоры по клин фармакол и лекарств терапии 6: 3–25. [ Evseeva M, Evseev A, Pravdivtsev W, Shabanov P (2008) Mechanisms of development of acute hypoxia and its pharmacologic correction. Rev Clin Pharmac and Drug Therap 6: 3–25. (In Russ)].

Меерсон Ф (1993) Адаптация к стрессу: механизмы и защитные перекрестные эффекты. Hyp Med J 4: 23–30. [Meerson F (1993) Adaptation to stress: mechanisms and protective cross-effects. Hyp Med J 4: 23–30. (In Russ)].

Rybnikova E, Nalivaeva N (2021) Glucocorticoid-Dependent Mechanisms of Brain Tolerance to Hypoxia. Int J Mol Sci 22: 7982. https://doi.org/10.3390/ijms22157982

Khoshnam S, Winlow W, Farzaneh M, Farbood Y, Moghaddam H (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38: 1167–1186. https://doi.org/10.1007/s10072-017-2938-1

Virués-Ortega J, Buela-Casal G, Garrido E, Alcázar B (2004) Neuropsychological functioning associated with high-altitude exposure. Neuropsychol Rev 14:197–224. https://doi.org/10.1007/s11065-004-8159-4

Steinback C, Poulin M (2016) Influence of Hypoxia on Cerebral Blood Flow Regulation in Humans. Adv Exp Med Biol 903:131–144. https://doi.org/10.1007/978-1-4899-7678-9_9

Dunham-Snary K, Wu D, Sykes E, Thakrar A, Parlow L, Mewburn J, Parlow J, Archer S (2017) Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest 151:181–192. https://doi.org/10.1016/j.chest.2016.09.001

Bilo G, Caravita S, Torlasco C, Parat G (2019) Blood pressure at high altitude: physiology and clinical implications. Kardiol polska 77: 596–603. https://doi.org/10.33963/KP.14832

Cиротинин Н (1981) Эволюция резистентности и реактивности организма. Москва. Медицина. [Sirotinin N (1981) Evolution of resistance and reactivity of organism. Moscow. Meditzina. (In Russ)].

Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, Giraud S, Hauet T, Guillard J (2021) Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int J Mol Sci 22: 1–21. https://doi.org/10.3390/ijms22052366

Burda J, Burda R (2021) Ischemic tolerance - blessing or curse. Physiol Res 70: 661–670. https://doi.org/10.33549/physiolres.934644

Zhang Y, Cao Y, Liu C (2020) Autophagy and Ischemic Stroke. Adv Exp Med Biol 1207:111–134. https://doi.org/10.1007/978-981-15-4272-5_7

Viscor G, Torrell, J R, Corral L, Ricart A, Javierre C, Pages T, Ventura J L (2018) Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications. Front Physiol 9: 814. https://doi.org/10.3389/fphys.2018.00814

Pulsinelli W, Brierley J (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272. https://doi.org/10.1161/01.str.10.3.267

Ito U, Hakamata Y, Yamaguchi T, Ohno K (2013) Cerebral ischemia model using mongolian gerbils-comparison between unilateral and bilateral carotid occlusion models. Acta Neurochir Suppl 118:17–21. https://doi.org/10.1007/978-3-7091-1434-6_3

León-Moreno L, Castañeda-Arellano R, Rivas-Carrillo J, Dueñas-Jiménez S (2020) Challenges and Improvements of Developing an Ischemia Mouse Model Through Bilateral Common Carotid Artery Occlusion. J Stroke Cerebrovasc Diseases 29:104773. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104773

Семенов Д, Лазаревич Е, Самойлов М (1988) Изменения обмена кальция в структурах коры головного мозга при аноксии. Бюл эксп биол мед 105: 261–264. [Semenov D, Lazarewicz J, Samoilov M (1988) The changes in calcium metabolism in brain structures during anoxia. Bull Exp Biol Med 105: 261–264. (In Russ)].

Самойлов М (1999) Мозг и адаптация. Молекулярно-клеточные механизмы. СПб. ИФРАН. [Samoilov M (1999) Brain and adaptation. Molecular-cellular Mechanisms. SPb. IFRAN. (In Russ)].

Xu H, Lu A, Sharp F (2011) Regional genome transcriptional response of adult mouse brain to hypoxia. BMC Genomics 12: 499–515. https://doi.org/10.1186/1471-2164-12-499

Цыганова ТН (2019) Нормобарическая интервальная гипоксическая тренировка – обоснование создания нового поколения гипоксикатора гипо-окси-1 (обзорная статья). Рос журн реабил мед 1:46–66. [Tsyganova TN (2019) Normobaric interval hypoxic training – rationale for creating a new generation of the hypoxicator hypo-oxy-1 (review article). Russ J Rehab Med 1:46–66. (In Russ)].

Sharma N, Sethy N, Bhargava K (2013) Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant enzymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J Proteomics 79: 277–298. https://doi.org/10.1016/j.jprot.2012.12.020

Kauser H, Sahu S, Kumar S, Panjwani U (2013) Guanfacine is an effective countermeasure for hypobaric hypoxia - induced cognitive decline. Neuroscience 254:110–119. https://doi.org/10.1016/j.neuroscience.2013.09.023

Goswami AR, Dutta G, Ghosh T (2016) Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats. High Altitude Med Biol 17: 133–140. https://doi.org/10.1089/ham.2015.0052

Rybnikova E, Vorobyev M, Pivina S, Samoilov M (2012) Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia. Neurosci Lett 513: 100–105. https://doi.org/10.1016/j.neulet.2012.02.019

Carmichael T (2005) Rodent models of focal stroke: size, mechanism and purpose. NeuroRx 2: 396–409. https://doi.org/10.1602/neurorx.2.3.396

Koizumi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in which recirculation can introduced into the ischemic area. Jpn J Stroke 8:108–118.

Belayev L, Alonso O, Busto R, Zhao W, Ginsberg M (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622. https://doi.org/10.1161/01.str.27.9.1616

Takagi K, Zhao W, Busto R, Ginsberg M (1995) Local hemodynamic changes during transient middle cerebral artery occlusion and recirculation in the rat: a [14C]iodoantipyrine autoradiographic study. Brain Res 691:160–168. https://doi.org/10.1016/0006-8993(95)00657-c

Labat-gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Visual Exp: JoVE 76: 1-6. 50370. https://doi.org/10.3791/50370

Glazier S, O’Rourke D, Graham D, Welsh F (1994) Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab 14: 545–554. https://doi.org/10.1038/jcbfm.1994.68

Hossmann K-A (2008) Cerebral ischemia: models, methods and outcomes. Neuropharmacology 55:257–270. https://doi.org/10.1016/j.neuropharm.2007.12.004

Sommer C (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133:245–261. https://doi.org/10.1007/s00401-017-1667-0

Johnson S, Dwivedi A, Mirza M, McCarthy R, Gilvarry M (2022) Review of the Advancements in the in-vitro Modelling of Acute Ischemic Stroke and Its Treatment. Front Med Technol 4: 879074. https://doi.org/10.3389/fmedt.2022.879074

Stray-Gundersen J, Chapman R, Levine B (2001) ''Living high, training low'' altitude training improves sea level performance in male and female elite runners. J Appl Physiol 91:1113–1120. https://doi.org/10.1152/jappl.2001.91.3.1113

Беляков А, Семенов Д (2018) Стимуляция когнитивных способностей пожилых макак умеренной гипобарической гипоксией. Успехи геронтол 31: 966–972. [Belyakov A, Semenov D (2018) Stimulation of cognitive abilities in aged macaques by moderate hypobaric hypoxia. Adv Geront 31: 966–972 (In Russ)]. https://www.researchgate.net/publication/331354909

Беляков А, Семенов Д (2018) Опыт исследования и коррекции когнитивных функций макак. Журн высш нервн деят им ИП Павлова 68:163–175. [Belyakov A, Semenov D (2018) The experience of investigation and correction of cognitive function of macaca mulatta. Zhurn Viss Nerv Deyat im IP Pavlova 68:163–175. (In Russ)]. https://doi.org/10.7868/S004446771802003X

Clarke С (2006) Acute mountain sickness: medical problems associated with acute and subacute exposure to hypobaric hypoxia. Postgrad Med J 82: 748–753. https://doi.org/10.1136/pgmj.2006.047662

Wright A (2006) Medicine at high altitude. Clin Med 6:604–608. https://doi.org/10.7861/clinmedicine.6-6-604

Trapé Á, Camacho-Cardenosa M, Camacho-Cardenosa A, Merellano-Navarro E, Rodrigues J, da Silva Lizzi E, Sorgi C, Papoti M, Brazo-Sayavera J (2021) Effects of moderate-intensity intermittent hypoxic training on health outcomes of patients recovered from COVID-19: the AEROBICOVID study protocol for a randomized controlled trial. Trials 22: 534. https://doi.org/10.1186/s13063-021-05414-2

Baranova K (2017) Remote ischemic conditioning of the brain: phenomena and mechanism. Neurochem J 11:189–193. https://doi.org/10.1134/S1819712417030023

Sharma D, Maslov L, Singh N, Jaggi A (2020) Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: Preclinical evidence and mechanisms. Eur J Pharmacol 883: 173380. https://doi.org/10.1016/j.ejphar.2020.173380

Landucci E, Pellegrini-Giampietro D E, Facchinetti F (2022). Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 10: 937. https://doi.org/10.3390/biomedicines10050937

Левченкова О, Новиков В, Марышева В (2015) Влияние нового производного тиазолоиндола на устойчивость организма к гипоксии в ранний и поздний периоды прекондиционирования. Обзоры клин фармакол лекарств терапии 13: 52–55. [Levchenkova O, Novikov V, Marysheva V (2015) Influence of the new tiazoloindole derivative on organism resistance to hypoxia in the early and late periods of preconditioning. Rev Clin Pharmacol Drug Therap 13: 52-55. (In Russ)].

Hzhehots'kyĭ M, Panina L, Terlets'ka O, Koval'chuk S (2007) Functional and metabolic basis of sodium nitrite modulatory influence in the brain in hemic hypoxia. Fiziol Zh 53: 70–77. PMID: 17725046

Li M, Wu L-Y, Zhao T, Wu K, Xiong L, Zhu L, Fan M (2011) The protective role of 5-hydroxymethyl-2-furfural (5-HMF) against acute hypobaric hypoxia. Cell Stress Chaper 16: 529–537. https://doi.org/10.1007/s12192-011-0264-8

Stutzmann J, Mary V, Wahl F, Grosjean-Piot O, Uzan A, Pratt J (2002) Neuroprotective profile of enoxaparin, a low molecular weight heparin, in in vivo models of cerebral ischemia or traumatic brain injury in rats: a review. CNS Drug Rev 8: 1–30. https://doi.org/10.1111/j.1527-3458.2002.tb00213.x

Hoffman G, Merchenthaler I, Zup S (2006) Neuroprotection by ovarian hormones in animal models of neurological disease. Endocrine 29: 217–231. https://doi.org/10.1385/endo:29:2:217

Gahwiler B, Capogna M, Debanne D, McKinney R, Thompson S (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20: 471–477. https://doi.org/10.1016/s0166-2236(97)01122-3

Vornov J, Tasker R, Coyle J (1994) Delayed protection by MK-801 and tetrodotoxin in a rat organotypic hippocampal culture model of ischemia. Stroke 25: 457–464. https://doi.org/10.1161/01.str.25.2.457

Cimarosti H, Zamin L, Frozza R, Nassif M, Horn A, Tavares A, Netto A, Salbego C (2005) Estradiol protects against oxygen and glucose deprivation in rat hippocampal organotypic cultures and activates Akt and inactivates GSK-3beta. Neurochem Res 30: 191–199. https://doi.org/10.1007/s11064-004-2441-y

Place TL, Domann FE, Case AJ (2017) Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic Biol Med 113:311–322. doi: 10.1016/j.freeradbiomed.2017.10.003

Bordt E A (2018) The importance of controlling in vitro oxygen tension to accurately model in vivo neurophysiology. Neurotoxicology 66: 213–220. https://doi.org/10.1016/j.neuro.2017.10.008

Pavlacky J, Polak J (2020) Technical Feasibility and Physiological Relevance of Hypoxic Cell Culture Models. Front Eendocrinol 11: 1–15. https://doi.org/10.3389/fendo.2020.00057

Whittingham T, Lust D, Passonneau J (1984) An in vitro model of ischemia: metabolic and electrical alterations in the hippocampal slice. J Neurosci 4: 793–802. https://doi.org/10.1523/jneurosci.04-03-00793.1984

Tasca C I, Dal-Cim T, Cimarosti H (2015) In vitro oxygen-glucose deprivation to study ischemic cell death. Methods Mol Biol (Clifton, NJ) 1254.197–210. https://doi.org/10.1007/978-1-4939-2152-2_15

Pérez-Rodríguez D, Anuncibay-Soto B, Llorente I, Pérez-García C, Fernández-López A (2015) Hippocampus and cerebral cortex present a different autophagic response after oxygen and glucose deprivation in an ex vivo rat brain slice model. Neuropathol Appl Neurobiol 41: e68–e79. https://doi.org/10.1111/nan.12152

Semenov D, Samoilov M, Lazarewicz J (2008) Preconditioning reduces hypoxia-evoked alterations in glutamatergic Ca2+ signaling in rat cortex. Acta Neurobiol Exp (Wars) 68:169–179.

Revah O, Lasser-Katz E, Fleidervish I, Gutnick M (2016) The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent. Neurobiol Disease 95: 158–167. https://doi.org/10.1016/j.nbd.2016.07.019

Hunyor I, Cook K (2018) Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer. Am J Physiol 315: R669–R687. https://doi.org/10.1152/ajpregu.00036.2018

Tsapikouni T, Garreta E, Melo E, Navajas D, Farré R (2012) A bioreactor for subjecting cultured cells to fast-rate intermittent hypoxia. Respirat Physiol and Neurobiol 182: 47–52. https://doi.org/10.1016/j.resp.2012.01.001

Polak J, Studer-Rabeler K, McHugh H, Hussain M A, Shimoda L A (2015) System for exposing cultured cells to intermittent hypoxia utilizing gas permeable cultureware. Gen Physiol Biophys 34: 235–247. https://doi.org/10.4149/gpb_2014043