РОЛЬ ОКСИДА АЗОТА (NO) В МЕХАНИЗМАХ СТРУКТУРНЫХ ИЗМЕНЕНИЙ ИНТЕРСТИЦИЯ ПОЧЕЧНОЙ МЕДУЛЛЫ В УСЛОВИЯХ ГИПОТИРЕОЗА У КРЫС С РАЗЛИЧНЫМ УРОВНЕМ ВАЗОПРЕССИНА В КРОВИ
PDF

Ключевые слова

гиалуронан
гипотиреоз
оксид азота
вазопрессин
реабсорбция воды
крысы линии WAG и Brattleboro

Как цитировать

Правикова, П. Д., & Иванова, Л. Н. (2022). РОЛЬ ОКСИДА АЗОТА (NO) В МЕХАНИЗМАХ СТРУКТУРНЫХ ИЗМЕНЕНИЙ ИНТЕРСТИЦИЯ ПОЧЕЧНОЙ МЕДУЛЛЫ В УСЛОВИЯХ ГИПОТИРЕОЗА У КРЫС С РАЗЛИЧНЫМ УРОВНЕМ ВАЗОПРЕССИНА В КРОВИ. Российский физиологический журнал им. И. М. Сеченова, 108(11), 1497–1510. https://doi.org/10.31857/S0869813922110097

Аннотация

У крыс линии WAG c высоким уровнем вазопрессина и у вазопрессин-дефицитной линии крыс Brattleboro в условиях гипотиреоза исследована роль почечного аутакоида оксида азота (NO) в механизмах структурных изменений интерстиция почечной медуллы, влияющих на внеклеточную проницаемость матрикса для воды и ионов. Установлено, что гипотиреоз у крыс WAG не приводит к существенным изменениям параметров гидроуретической функции, тогда как для крыс Brattleboro характерна антидиуретическая реакция вследствие активации реабсорбции осмотически свободной воды. Предполагается, что отсутствие изменений параметров гидроуреза у крыс WAG при гипотиреозе обусловлено увеличением в медуллярной зоне почки содержания гиалуронана, основного компонента интерстиция, образующего барьер на пути диффузии воды и ионов. В то же время у крыс Brattleboro стимуляция концентрирующей функции при моделировании гипотиреоза не сопровождается существенными изменениями состояния внеклеточного матрикса, который для данной линии крыс в интактном состоянии характеризуется практически полным отсутствием гиалуронана. Установлено, что NO играет существенную роль в изменении структуры почечного интерстиция у крыс WAG в условиях гипотиреоза. Блокада синтеза NO с помощью L-NAME приводит к устранению выявленных при гипотиреозе изменений внеклеточного матрикса сосочка почки в связи с изменением до базальных значений контрольной группы уровня экспрессии гена гиалуронансинтазы-2 (HAS2), кодирующего фермент синтеза гиалуронана. Результаты исследования позволяют заключить, что гипотиреоз приводит к нарастанию содержания гиалуронана в интерстиции почечной медуллы, причем ключевую роль в проявлении данного эффекта играет NO, базальная активность которого в сосочке почки зависит от уровня вазопрессина в крови.

https://doi.org/10.31857/S0869813922110097
PDF

Литература

Stridh S, Palm F, Hansell P (2012) Renal interstitial Hyaluronan: functional aspects during normal and pathological conditions. Am J Physiol Regul Integr Comp Physiol 302: R1235–R1249. https://doi.org/10.1152/ajpregu.00332.2011

Lee JY, Spicer AP (2000) Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol 12(5): 581–586. https://doi.org/10.1016/S0955-0674(00)00135-6

Cowman MK (2017) Hyaluronan and Hyaluronan Fragments. Adv Carbohydr Chem Biochem 74: 1–59. https://doi.org/10.1016/bs.accb.2017.10.001

Laurent TC, Laurent UB, Fraser JR (1996) The structure and function of Hyaluronan: An overview. Immunol Cell Biol 74: A1–A7. https://doi.org/10.1038/icb.1996.32

Itano N (2008) Simple Primary Structure, Complex Turnover Regulation and Multiple Roles of Hyaluronan. J Biochem 144: 131–137. https://doi.org/10.1093/jb/mvn046

Erickson M, Stern R (2012) Chain gangs: new aspects of hyaluronan metabolism. Biochem Res Int 2012: 893947. https://doi.org/10.1155/2012/893947

Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels--from atomic structure to clinical medicine. J Physiol 542(1): 3–16. https://doi.org/10.1113/jphysiol.2002.020818

Ivanova LN, Melidi NN (2001) Effects of vasopressin on hyaluronate hydrolase activities and water permeability in the frog urinary bladder. Pflugers Arch 443: 72–77. https://doi.org/10.1007/s004240100575

Dzgoev SG (2015) Selective V₂-Agonist of Vasopressin Desmopressin Stimulates Activity of Serum Hyaluronidase. Bull Exp Biol Med 159(4): 424–426. https://doi.org/10.1007/s10517-015-2981-y

Ivanova LN, Babina AV, Baturina GS, Katkova LE (2013) Effect of vasopressin on the expression of genes for the key enzymes of hyaluronan turmover in WAG and Brattleboro rat kidney. J Exp Physiol 98(11): 1608–1619. https://doi.org/10.1113/expphysiol.2013.073163

Rügheimer L, Johnsson C, Maric C, Hansell P (2008) Hormonal regulation of renomedullary hyaluronan. Acta Physiol (Oxf) 193: 191–198. https://doi.org/10.1111/j.1748-1716.2007.01795.x

Stridh S, Palm F, Takahashi T, Ikegami-Kawai M, Friederich-Persson M, Hansell P (2017) Hyaluronan Production by Renomedullary Interstitial Cells: Influence of Endothelin, Angiotensin II and Vasopressin. Int J Mol Sci 18(12): 2701. https://doi.org/10.3390/ijms18122701

Pinter GG, Shohet JL (2009) An inner medullary concentrating process activated by renal pelviccalyceal muscle contractions: assessment and hypothesis. J Nephr Physiol 113: 1–6. https://doi.org/10.1159/000228082

den Hollander JG, Wulkan RW, Mantel MJ, Berghout A (2005) Correlation between severity of thyroid dysfunction and renal function. Clin Endocrinol 62: 423–427. https://doi.org/10.1111/j.1365-2265.2005.02236.x

Mariani LH, Berns JS (2012) The renal manifestations of thyroid disease. J Am Soc Nephrol 23(1): 22–26. https://doi.org/10.1681/ASN.2010070766

Iglesias P, Bajo MA, Selgas R, Diez JJ (2009) Thyroid dysfunction and kidney disease. Eur J Endocrinol 160: 503–515. https://doi.org/10.1007/s11154-016-9395-7

Vargas F, Moreno JM, Rodriguez-Gomez I, Wangensteen R, Osuna A, Alvarez Guerra M, Garcia-Estan J (2006) Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol 2: 197–212. https://doi.org/10.1530/eje.1.02093

Skowsky WR, Kikuchi TA (1978) The role of vasopressin in the impaired water excretion of myxedema. Am J Med 64(4): 613–621. https://doi.org/10.1016/0002-9343(78)90581-8

Chen YC, Cadnapaphornchai MA, Yang J, Summer SN, Falk S, Li C, Wang W, Schrier RW (2005) Nonosmotic release of vasopressin and renal aquaporins in impaired urinary dilution in hypothyroidism. Am J Physiol: Renal Physiol 289: 672–678. https://doi.org/10.1152/ajprenal.00384.2004

Menzinger S, Kaya A, Saurat JH, Kaya G (2016) Injected Hyaluronidase Reduces the Volume of Exogenous Hyaluronate Fillers in Mice and Results in Clinical Improvement in a Patient with Pretibial Myxedema. Dermatopathology (Basel) 3(3): 61–67. https://doi.org/10.1159/000446699

Hoesly PM, Tolaymat LM, Sluzevich JC, Keeling JH (2018) Pretibial myxedema successfully treated with intralesional hyaluronidase. JAAD Case Rep 4(9): 874–876. https://doi.org/10.1016/j.jdcr.2018.08.018

Leipziger J, Praetorius H (2020) Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 100(3): 1229–1289. https://doi.org/10.1152/physrev.00014.2019

Sarati LI, Toblli JE, Martinez CR, Uceda A, Feldman M, Balaszczuk AM, Fellet AL (2013) Nitric oxide and aqp2 in hypothyroid rats: A link between aging and water homeostasis. Metabolism 62: 1287–1295. https://doi.org/10.1016/j.metabol.2013.04.013

Valtin H, Schroeder HA (1997) Familial hypothalamic diabetes insipidus in rats (Brattleboro rata).1964 [classical article]. J Am Soc Nephrol 8: 1333–1341. https://doi.org/10.1681/ASN.V881333

Schmitt R, Klussmann E, Kahl T, Ellison DH, Bachmann S (2003) Renal expression of sodium transporters and aquaporin-2 in hypothyroid rats. Am J Physiol Renal Physiol 284: 1097–1104. https://doi.org/10.1152/ajprenal.00368.2002

Rong S, Gao Y, Yang Y, Shao H, Okekunle AP, Lv C, Du Y, Sun H, Jiang Y, Darko GM, Sun D (2018) Nitric oxide is involved in the hypothyroidism with significant morphology changes in female Wistar rats induced by chronic exposure to high water iodine from potassium iodate. Chemosphere 206: 320–329. https://doi.org/10.1016/j.chemosphere.2018.05.015

Zhou J, Cheng G, Pang H, Liu Q, Liu Y (2018) The effect of 131I-induced hypothyroidism on the levels of nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total nitric oxide synthase (NOS) activity, and expression of NOS isoforms in rats. Bosn J Basic Med Sci 18(4): 305–312. https://doi.org/10.17305/bjbms.2018.2350

Tain YL, Huang LT, Lee CT, Chan JY, Hsu CN (2015) Maternal citrulline supplementation prevents prenatal NG-nitro-l-arginine-methyl ester (l-NAME)-induced programmed hypertension in rats. Biol Reprod 92: 1–7. https://doi.org/10.1095/biolreprod.114.121384

Bancroft JD, Gamble M, Jones ML, Totty BA (2004) Theory and practice of histological techniques. Connective tissues and stains, 15th edn. Churchill Livingstone Publications 139–200.

Bookout AL, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF (2006) High-throughput real-time quantitative reverse transcription PCR. Curr Protoc Mol Biol 15: Unit 15.8. https://doi.org/10.1002/0471142727.mb1508s73

Ivanova LN, Babina AV, Baturina GS, Katkova LE (2017) The effect of vasopressin on the expression of genes of key enzymes of the interstitial hyaluronan turnover and concentration ability in WAG rat kidneys. Russ J Genet Appl Res 7: 249–257. https://doi.org/10.1134/S2079059717030066

Rügheimer L, Olerud J, Johnsson C, Takahashi T, Shimizu K, Hansell P (2009) Hyaluronan synthases and hyaluronidases in the kidney during changes in hydration status. Matrix Biol 28: 390–395. https://doi.org/10.1016/j.matbio.2009.07.002

Kabilova NO, Bondar AA, Ivanova LN (2009) Expression of type II hyaluronan-synthase gene in kidneys Wistar and Brattleboro rats with diabetes insipidus: effect of vasopressin and its analogues. Dokl Biochem Biophys 425: 61–64. https://doi.org/10.1134/S160767290902001X

Hansell P, Göransson V, Odlind C, Gerdin B, Hällgren R (2000) Hyaluronan content in the kidney in different states of body hydration. Kidney Int 58(5): 2061–2068. https://doi.org/10.1111/j.1523-1755.2000.00378.x

Göransson V, Johnsson C, Nylander O, Hansell P (2002) Renomedullary and intestinal hyaluronan content during body water excess: a study in rats and gerbils. J Physiol 542(Pt 1): 315–322. https://doi.org/0.1113/jphysiol.2001.014894

Colombaro V, Jadot I, Declèves AE, Voisin V, Giordano L, Habsch I, Malaisse J, Flamion B, Caron N (2015) Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int 88: 61–71. https://doi.org/10.1038/ki.2015.53

Iglesias P, Bajo MA, Selgas R, Díez JJ (2017) Thyroid dysfunction and kidney disease: An update. Rev Endocr Metab Disord 18(1):131–144. https://doi.org/10.1007/s11154-016-9395-7

Hanna FW, Scanlon MF (1997) Hyponatraemia, hypothyroidism, and role of arginine-vasopressin. Lancet 350(9080): 755–756. https://doi.org/10.1016/S0140-6736(05)62563-9

Yeum CH, Kim SW, Kim NH, Choi KC, Lee J (2002) Increased expression of aquaporin water channels in hypothyroid rat kidney. Pharmacol Res 46: 85–88. https://doi.org/10.1016/S1043-6618(02)00036-1

Fenton RA, Murali SK, Moeller HB (2020) Advances in Aquaporin-2 trafficking mechanisms and their implications for treatment of water balance disorders. Am J Physiol Cell Physiol 319(1): C1–C10. https://doi.org/10.1152/ajpcell.00150.2020

Sellitti DF, Akamizu T, Doi SQ, Kim GH, Kariyil JT, Kopchik JJ, Koshiyama H (2000) Renal expression of two ‘thyroid-specifific’ genes: thyrotropin receptor and thyroglobulin. Exp Nephrol 8: 235–243. https://doi.org/10.1159/000020674

Boutin A, Krieger CC, Marcus-Samuels B, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC (2020) TSH Receptor Homodimerization in Regulation of cAMP Production in Human Thyrocytes in vitro. Front Endocrinol (Lausanne) 11: 276. https://doi.org/10.3389/fendo.2020.00276

Bhave G, Neilson EG (2011) Body fluid dynamics: back to the future. J Am Soc Nephrol 22(12): 2166–2181. https://doi.org/10.1681/ASN.2011080865

Christensen BM, Zelenina M, Aperia A, Nielsen S (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol 278(1): F29–F42. https://doi.org/10.1152/ajprenal.2000.278.1.F29

Smith TJ, Bahn RS, Gorman CA (1989) Connective tissue, glycosaminoglycans, and diseases of the thyroid. Endocr Rev 10(3): 3663–3691. https://doi.org/10.1210/edrv-10-3-366

Wiederhielm CA, Black LL (1976) Osmotic interaction of plasma proteins with interstitial macromolecules. Am J Physiol 231(2): 638–641. https://doi.org/10.1152/ajplegacy.1976.231.2.638

Mcauliffe WG (1980) Histochemistry and ultrastructure of the interstitium of the renal papilla in rats with hereditary diabetes insipidus (Brattleboro strain). Am J Anat 157(1): 17–26. https://doi.org/10.1002/aja.1001570103

Pouyani T, Sadaka BH, Papp S, Schaffer L (2013) Triiodothyronine (T3) inhibits hyaluronate synthesis in a human dermal equivalent by downregulation of HAS2. In Vitro Cell Dev Biol Anim 49(3): 178–188. https://doi.org/10.1007/s11626-013-9583-7

Deshpande M, Papp S, Schaffer L, Pouyani T (2015) Hydrocortisone and triiodothyronine regulate hyaluronate synthesis in a tissue-engineered human dermal equivalent through independent pathways. J Biosci Bioeng 119(2): 226–236. https://doi.org/10.1016/j.jbiosc.2014.08.001

Ivanova LN, Lavrinenko VA, Shestopalova LV, Korotkova SM (2007) Structural and functional changes in epitheliocytes of collecting tubes in renal papilla of Brattleboro rats treated with vasopressin. Bull Exp Biol Med 143(1):94–98. https://doi.org/10.1007/s10517-007-0026-x

Ivanova LN, Goryunova TE, Nikiforovskaya LF, Tishchenko NI (1982) Hyaluronate hydrolase activity and glycosaminoglycans in the Brattleboro rat kidney. Ann NY Acad Sci 394: 503–508. https://doi.org/10.1111/j.1749-6632.1982.tb37462.x

Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, Tammi MI (2011) Transcriptional and post-translationalregulation of hyaluronan synthesis. FEBS J 278: 1419–1428. https://doi.org/10.1111/j.1742-4658.2011.08070.x

Bouley R, Hasler U, Lu HA, Nunes P, Brown D (2008) Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin Nephrol 28: 266–278. https://doi.org/10.1016/j.semnephrol.2008.03.010

Pravikova PD, Lavrinenko VА, Ivanova LN (2019) Effect of NO Synthesis Blockade on the Hydrouretic Function and Extracellular Matrix of the Kidneys in Rats with Different Blood Vasopressin Levels. Bull Exp Biol Med 167(2): 233–236. https://doi.org/10.1007/s10517-019-04498-w

O'Connor PM, Cowley AW Jr. (2007) Vasopressin-induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway. Am J Physiol Renal Physiol 293(2): F526–F532. https://doi.org/10.1152/ajprenal.00052.2007

Martin PY, Bianchi M, Roger F, Niksic L, Féraille E (2002) Arginine vasopressin modulates expression of neuronal NOS in rat renal medulla. Am J Physiol Renal Physiol 283(3): F559–F568. https://doi.org/10.1152/ajprenal.00309.2001