НЕЙРОЭНДОКРИННЫЙ КОНТРОЛЬ ГИПЕРГЛУТАМАТЕРГИЧЕСКИХ СОСТОЯНИЙ ПРИ ПАТОЛОГИЯХ МОЗГА: ВЛИЯНИЕ ГЛЮКОКОРТИКОИДОВ
PDF

Ключевые слова

гипоталамо–гипофизарно–надпочечниковая ось
глюкокортикоиды
, глутаматергический синапс
гиперглутаматергические состояния
гиппокамп
болезни мозга
нейродегенерация

Как цитировать

Гуляева, Н. В. (2022). НЕЙРОЭНДОКРИННЫЙ КОНТРОЛЬ ГИПЕРГЛУТАМАТЕРГИЧЕСКИХ СОСТОЯНИЙ ПРИ ПАТОЛОГИЯХ МОЗГА: ВЛИЯНИЕ ГЛЮКОКОРТИКОИДОВ. Российский физиологический журнал им. И. М. Сеченова, 108(9), 1077–1093. https://doi.org/10.31857/S0869813922090102

Аннотация

Нейроэндокринный контроль, опосредованный глюкокортикоидами, важен для поддержания нормального функционирования мозга и баланса между системами возбуждения и торможения. Глюкокортикоиды регулируют состояние глутаматергической системы мозга как непосредственно, через рецепторы на глутаматергических синапсах, так и опосредованными путями. Нарушение функционирования гипоталамо-гипофизарно-надпочечниковой оси и ее неспособность оптимально регулировать глутаматергическую синаптическую пластичность приводит к развитию нейропсихических заболеваний, в патогенезе которых ключевую роль могут играть гиперглутаматергические состояния. Нарушение глюкокортикоидного контроля глутаматергических процессов лежит в основе когнитивных и эмоциональных расстройств, эпилепсии и ряда других церебральных патологий, являясь общим базовым механизмом развития многих болезней мозга и их коморбидностей. В связи с этим исследование механизмов взаимодействия гипоталамо-гипофизарно-надпочечниковой оси и глутаматергической системы мозга имеет приоритетное трансляционное значение.

https://doi.org/10.31857/S0869813922090102
PDF

Литература

Gulyaeva NV (2019) Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. Biochemistry (Mosc) 84:1306–1328. https://doi.org/10.1134/S0006297919110087

Meyer JS (1985) Biochemical effects of corticosteroids on neural tissues. Physiol Rev. 65:946–1020. https://doi.org/10.1152/physrev.1985.65.4.946

Bolshakov AP, Tret’yakova LV, Kvichansky AA, Gulyaeva NV (2021) Glucocorticoids: Dr. Jekyll and Mr. Hyde of Hippocampal Neuroinflammation. Biochemistry (Mosc) 86:156–167. https://doi.org/10.1134/S0006297921020048

Uchoa ET, Aguilera G, Herman JP, Fiedler JL, Deak T, de Sousa MB (2014) Novel aspects of glucocorticoid actions J Neuroendocrinol 26:557–572. https://doi.org/10.1111/jne.12157

de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M (2018) Importance of the brain corticosteroid receptor balance in metaplasticity,cognitive performance and neuro-inflammation. Front Neuroendocrinol 49:124-145. https://doi.org/10.1016/j.yfrne.2018.02.003

Prager EM, Johnson LR (2009) Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal 2(86):re5. https://doi.org/ 10.1126/scisignal.286re5

Gulyaeva NV (2017) Molecular Mechanisms of Neuroplasticity: An Expanding Universe. Biochemistry (Mosc) 82:237–242. https://doi.org/ 10.1134/S0006297917030014

Xiong H, Krugers HJ (2015) Tuning hippocampal synapses by stress-hormones: Relevance for emotional memory formation. Brain Res 1621:114–120. https://doi.org/ 10.1016/j.brainres.2015.04.010

Jaszczyk A, Juszczak GR (2021) Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev 126:113–145. https://doi.org/10.1016/j.neubiorev.2021.03.007

Sapolsky RM (1993) Potential behavioral modification of glucocorticoid damage to the hippocampus. Behav Brain Res 57:175–182. https://doi.org/10.1016/0166-4328(93)90133-b

Höschl C, Hajek T (2001) Hippocampal damage mediated by corticosteroids--a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci 251 Suppl 2:II81–88. https://doi.org/10.1007/BF03035134

Gulyaeva N (2019) Functional Neurochemistry of the Ventral and Dorsal Hippocampus:Stress, Depression, Dementia and Remote Hippocampal Damage. Neurochem Res 44:1306–1322. https://doi.org/ 10.1007/s11064-018-2662-0

Cox MF, Hascup ER, Bartke A, Hascup KN (2022) Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer's Disease. Front Aging 3:929474. https://doi.org/10.3389/fragi.2022.929474

Lalo U, Koh W, Lee CJ, Pankratov Y (2021) The Tripartite Glutamatergic Synapse. Neuropharmacology 199: 108758. https://doi.org/10.1016/j.neuropharm.2021.108758

Findley CA, Bartke A, Hascup KN, Hascup ER (2019) Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics during Alzheimer’s Disease Progression. ASN Neuro 11. https://doi.org/10.1177/1759091419855541

Barco A, Bailey CH, Kandel ER (2006) CommonMolecular Mechanisms in Explicit and Implicit Memory. J Neurochem 97 (6): 1520–1533. https://doi.org/10.1111/J.1471-4159.2006.03870.X

Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ (2010) Characterisation of the Expression of NMDA Receptors in HumanAstrocytes. PLoS One 5 (11) e14123. https://doi.org/10.1371/JOURNAL.PONE.0014123

Hardingham GE, Bading H (2010). Synaptic versus Extrasynaptic NMDA Receptor Signalling: Implications for Neurodegenerative Disorders. Nat Rev Neurosci 11: 682–696. https://doi.org/10.1038/nrn2911

Vreugdenhil E, de Jong J, Schaaf MJ, Meijer OC, Busscher J, Vuijst C, de Kloet ER (1996) Molecular dissection of corticosteroid action in the rat hippocampus. Application of the differential display techniques. J Mol Neurosci 7(2):135–146. https://doi.org/10.1007/BF02736793

Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behaviour. Neuron 61:340–350. https://doi.org/ 10.1016/j.neuron.2009.01.015

Timmermans W, Xiong H, Hoogenraad CC, Krugers HJ (2013) Stress and excitatory synapses: from health to disease. Neuroscience 248:626–636. https://doi.org/ 10.1016/j.neuroscience.2013.05.043

Gulyaeva NV (2021) Glucocorticoid Regulation of the Glutamatergic Synapse: Mechanisms of Stress-Dependent Neuroplasticity. J Evol Biochem Phys 57:564–576. https://doi.org/10.1134/S0022093021030091

Joëls M, Pasricha N, Karst H (2013) The interplay between rapid and slow corticosteroid actions in brain. Eur J Pharmacol 719:44–52. https://doi.org/ 10.1016/j.ejphar.2013.07.015

Joëls M, de Kloet ER (2017) 30 Years of the mineralocorticoid receptor: The brain mineralocorticoid receptor: a saga in three episodes. J Endocrinol 234:T49–T66. https://doi.org/ 10.1530/JOE-16-0660

Le Menuet D, Lombès M (2014) The neuronal mineralocorticoid receptor: from cell survival to neurogenesis. Steroids 91:11–19. https://doi.org/10.3389/fendo.2016.00066

Joëls M, Sarabdjitsingh RA, Karst H (2012) Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev 64:901–938. https://doi.org/10.1124/pr.112.005892

Pretorius E, Marx J (2004) Direct and indirect effects of corticosteroids on astrocyte function. Rev Neurosci15(3):199–207. https://doi.org/10.1515/revneuro.2004.15.3.199

Gulyaeva NV (2017) Interplay between Brain BDNF and Glutamatergic Systems: A Brief State of the Evidence and Association with the Pathogenesis of Depression. Biochemistry (Mosc) 82:301–307. https://doi.org/ 10.1016/j.ejphar.2013.07.015

Pluchino N, Russo M, Santoro AN, Litta P, Cela V, Genazzani AR (2013) Steroid hormones and BDNF. Neuroscience 239:271–279. https://doi.org/10.1016/j.neuroscience.2013.01.025

Jezova D (2005) Control of ACTH secretion by excitatory amino acids: functional significance and clinical implications. Endocrine 28(3):287–294. https://doi.org/10.1385/ENDO:28:3:287

Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719. https://doi.org/10.1016/j.neuropharm.2021.108719

Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB (2021) Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 99:3148–3189. https://doi.org/10.1002/jnr.24977

Abulseoud OA, Alasmari F, Hussein AM, Sari Y (2022) Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 16:841036. https://doi.org/10.3389/fnins.2022.841036

Fairless R, Bading H, Diem R (2021) Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Front Neurosci 15:741280. https://doi.org/10.3389/fnins.2021.741280

Yuen EY, Wei J, Yan Z (2017) Molecular and Epigenetic Mechanisms for the Complex Effects of Stress on Synaptic Physiology and Cognitive Functions. Int J Neuropsychopharmacol 20:948–955. https://doi.org/10.1093/ijnp/pyx052

Moraes BJ, Coelho P, Fão L, Ferreira IL, Rego AC (2021) Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 454:116–139. https://doi.org/10.1016/j.neuroscience.2019.12.002

Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH (2020) Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 14:90. https://doi.org/10.3389/fncel.2020.00090

Mira RG, Cerpa W (2021) Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cell Mol Neurobiol 41(7):1413–1430. https://doi.org/10.1007/s10571-020-00924-0

Lim SI, Song KH, Yoo CH, Woo DC, Choe BY (2018) High-fat diet-induced hyperglutamatergic activation of the hippocampus in mice: A proton magnetic resonance spectroscopy study at 9.4T. Neurochem Int 114:10–17. https://doi.org/10.1016/j.neuint.2017.12.007

Гуляева НВ (2020) Физиологический континуум пластичности и патологии нервной системы. Интеграт физиол 1: 294–302. [Gulyaeva NV (2020) Physiological continuum of plasticity and pathology of the nervous system. Integrat Physiol 1:294–302. (In Russ)]. https://doi.org/10.33910/2687-1270-2020-1-4-294-302

Lupien SJ, Nair NP, Brière S, Maheu F, Tu MT, Lemay M, McEwen BS, Meaney MJ (1999) Increased cortisol levels and impaired cognition in human aging: implication for depression and dementia in later life. Rev Neurosci10:117–139. https://doi.org/10.1515/revneuro.1999.10.2.117. PMID: 10658955

Magri F, Cravello L, Barili L, Sarra S, Cinchetti W, Salmoiraghi F, Micale G, Ferrari E (2006) Stress and dementia: the role of the hypothalamicpituitary-adrenal axis. Aging Clin Exp Res 18(2):167–170. https://doi.org/10.1007/BF03327435

Justice NJ (2018) The relationship between stress and Alzheimer's disease. Neurobiol Stress 8:127-133. https://doi.org/10.1016/j.ynstr.2018.04.002

Sanguino-Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. (2022) An emerging role for microglia in stress-effects on memory. Eur J Neurosci 55:2491–2518. https://doi.org/10.1111/ejn.15188

Kim E, Otgontenger U, Jamsranjav A, Kim SS (2020) Deleterious Alteration of Glia in the Brain of Alzheimer's Disease. Int J Mol Sci 21(18):6676. https://doi.org/10.3390/ijms21186676

Escher CM, Sannemann L, Jessen F (2019) Stress and Alzheimer's disease. J Neural Transm (Vienna) 126(9):1155–1161. https://doi.org/10.1007/s00702-019-01988-z

Lyons CE, Bartolomucci A (2020) Stress and Alzheimer's disease: A senescence link? Neurosci Biobehav Rev 115:285–298. https://doi.org/10.1016/j.neubiorev.2020.05.010

Polleri A, Gianelli MV, Murialdo G (2002) Dementia: a neuroendocrine perspective. J Endocrinol Invest 25:73–83. https://doi.org/10.1007/BF03343964

Saelzler UG, Verhaeghen P, Panizzon MS, Moffat SD (2021) Intact circadian rhythm despite cortisol hypersecretion in Alzheimer's disease: A meta-analysis. Psychoneuroendocrinology 132:105367. https://doi.org/10.1016/j.psyneuen.2021.105367

Milligan Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D (2021) Chronic stress and Alzheimer's disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 96(5):2209–2228. https://doi.org/10.1111/brv.12750

Notarianni E (2017) Cortisol: Mediator of association between Alzheimer's disease and diabetes mellitus? Psychoneuroendocrinology 81:129–137. https://doi.org/10.1016/j.psyneuen.2017.04.008

Herbert J, Lucassen PJ (2016) Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Front Neuroendocrinol 41:153–171. https://doi.org/10.1016/j.yfrne.2015.12.001

Targa Dias Anastacio H, Matosin N, Ooi L (2022) Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 12(1):257. https://doi.org/10.1038/s41398-022-02024-7

Hascup KN, Findley CA, Britz J, Esperant-Hilaire N, Broderick SO, Delfino K, Tischkau S, Bartke A, Hascup ER (2021) Riluzole attenuates glutamatergic tone andcognitive decline in AβPP/PS1 mice. J Neurochem 156(4):513–523. https://doi.org/10.1111/jnc.15224

Gulyaeva NV (2021) Hippocampal hyperglutamatergic signaling matters: Early targeting glutamate neurotransmission as a preventive strategy in Alzheimer's disease: An Editorial Highlight for "Riluzole attenuates glutamatergic tone and cognitive decline in AβPP/PS1 mice" J Neurochem 156:399–402. https://doi.org/10.1111/jnc.15238

Srivastava A, Das B, Yao AY, Yan R (2020) Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. J Alzheimers Dis 78):1345–1361. https://doi.org/10.3233/JAD-201146

Babaei P (2021) NMDA and AMPA receptors dysregulation in Alzheimer's disease. Eur J Pharmacol 908:174310. https://doi.org/10.1016/j.ejphar.2021.174310

Conway ME (2020) Alzheimer's disease: targeting the glutamatergic system. Biogerontology 21(3):257–274. https://doi.org/10.1007/s10522-020-09860-4

Zott B, Konnerth A (2022) Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol.S1084-9521(22)00080-5. https://doi.org/10.1016/j.semcdb.2022.03.013

Song J, Yang X, Zhang M, Wang C, Chen L (2021) Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 84:557–578. https://doi.org/10.3233/JAD-210595

Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T (2020) The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 21:7452. https://doi.org/10.3390/ijms21207452

Behl C (1998) Effects of glucocorticoids on oxidative stress-induced hippocampal cell death: implications for the pathogenesis of Alzheimer's disease. Exp Gerontol 33:689–696. https://doi.org/10.1016/s0531-5565(98)00019-9

Ouanes S, Popp J (2019) High Cortisol and the Risk of Dementia and Alzheimer's Disease: A Review of the Literature. Front Aging Neurosci 11:43. https://doi.org/10.3389/fnagi.2019.00043

Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77. https://doi.org/10.1016/j.neuropharm.2011.07.036

Musazzi L, Treccani G, Popoli M (2015) Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress. Front Psychiatry 6:60. https://doi.org/ 10.3389/fpsyt.2015.00060

Musazzi L, Racagni G, Popoli M (2011) Stress, glucocorticoids and glutamate release: effects of antidepressant drugs. Neurochem Int 59(2):138–149. https://doi.org/10.1016/j.neuint.2011.05.002

Banerjee J, Dey S, Dixit AB, Tripathi M, Doddamani R, Sharma MC, Chandra PS (2020) α7 nicotinic receptors contributes to glutamatergic activity in the hippocampus of patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE- HS). J Neural Transm (Vienna) 127(10):1441–1446. https://doi.org/10.1007/s00702-020-02239-2

Dey S, Banerjee Dixit A, Tripathi M, Doddamani RS, Sharma MC, Lalwani S, Chandra PS, Banerjee J (2021) Altered hippocampal kynurenine pathway metabolism contributes to hyperexcitability in human mesial temporal lobe epilepsy-hippocampal sclerosis. Br J Pharmacol 178(19):3959–3976. https://doi.org/10.1111/bph.15534

Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, Thomas PJ, Holloway AC (2022) An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. Int J Mol Sci 23:6300. https://doi.org/10.3390/ijms23116300

Kanner AM (2009) Depression and epilepsy: do glucocorticoids and glutamate explain their relationship? Curr Neurol Neurosci Rep 9:307–312. https://doi.org/10.1007/s11910-009-0046-1

Gulyaeva NV (2021) Stress-Associated Molecular and Cellular Hippocampal Mechanisms Common for Epilepsy and Comorbid Depressive Disorders. Biochemistry (Mosc) 86: 641–656. https://doi.org/10.1134/S0006297921060031

Altamura AC, Boin F, Maes M (1999) HPA axis and cytokines dysregulation in schizophrenia: potential implications for the antipsychotic treatment. Eur Neuropsychopharmacol 10:1–4. https://doi.org/10.1016/s0924-977x(99)00017-6

Martínez-Pinteño A, García-Cerro S, Mas S, Torres T, Boloc D, Rodríguez N, Lafuente A, Gassó P, Arnaiz JA, Parellada E (2020) The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J Psychiatr Res 126:8–18. https://doi.org/10.1016/j.jpsychires.2020.04.005

Lum JS, Millard SJ, Huang XF, Ooi L, Newell KA (2018) A postmortem analysis of NMDA ionotropic and group 1 metabotropic glutamate receptors in the nucleusaccumbens in schizophrenia. J Psychiatry Neurosci 43:102–110. https://doi.org/10.1503/jpn.170077

Fukuyama K, Kato R, Murata M, Shiroyama T, Okada M (2019) Clozapine Normalizes a Glutamatergic Transmission Abnormality Induced by an Impaired NMDA Receptor in the Thalamocortical Pathway via the Activation of a Group III Metabotropic Glutamate Receptor. Biomolecules 9:234. https://doi.org/10.3390/biom9060234

Limongi R, Jeon P, Théberge J, Palaniyappan L (2021) Counteracting Effects of Glutathione on the Glutamate-Driven Excitation/Inhibition Imbalance in First-Episode Schizophrenia: A 7T MRS and Dynamic Causal Modeling Study. Antioxidants (Basel) 10:75. https://doi.org/ 10.3390/antiox10010075

Wang G, Weber-Fahr W, Frischknecht U, Hermann D, Kiefer F, Ende G, Sack M (2021) Cortical Glutamate and GABA Changes During Early Abstinence in Alcohol Dependence and Their Associations With Benzodiazepine Medication. Front Psychiatry 12:656468. https://doi.org/10.3389/fpsyt.2021.656468

Laniepce A, Cabé N, André C, Bertran F, Boudehent C, Lahbairi N, Maillard A, Mary A, Segobin S, Vabret F, Rauchs G, Pitel AL (2020) The effect of alcohol withdrawal syndrome severity on sleep, brain and cognition. Brain Commun 2:fcaa123. https://doi.org/10.1093/braincomms/fcaa123

Prendergast MA, Mulholland PJ (2012) Glucocorticoid and polyamine interactions in the plasticity of glutamatergic synapses that contribute to ethanol-associated dependence and neuronal injury. Addict Biol 17:209–223. https://doi.org/10.1111/j.1369-1600.2011.00375.x

Laukkanen V, Kärkkäinen O, Kautiainen H, Tiihonen J, Storvik M (2019) Increased [³H]quisqualic acid binding density in the dorsal striatum and anterior insula of alcoholics: A post-mortem whole-hemisphere autoradiography study. Psychiatry Res Neuroimaging 287:63–69. https://doi.org/10.1016/j.pscychresns.2019.04.002

Hadad NA, Schwendt M, Knackstedt LA (2020) Hypothalamic-pituitary-adrenal axis activity in post-traumatic stress disorder and cocaine use disorder. Stress. 23(6):638–650. https://doi.org/10.1080/10253890.2020.1803824

Montemitro C, Angebrandt A, Wang TY, Pettorruso M, Abulseoud OA (2021) Mechanistic insights into the efficacy of memantine in treating certain drug addictions. Prog Neuropsychopharmacol Biol Psychiatry 111:110409. https://doi.org/10.1016/j.pnpbp.2021.110409