ПОВЕДЕНИЕ КРЫС В ТЕСТАХ НА ТРЕВОЖНОСТЬ ПРИ НЕПРОДОЛЖИТЕЛЬНОМ ИНТРАНАЗАЛЬНОМ ВВЕДЕНИИ ОДНОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК В ДВУХ НЕБОЛЬШИХ ДОЗАХ
PDF

Ключевые слова

однослойные углеродные нанотрубки
небольшие дозы
интраназальное введение
поведение крыс
тест «открытое поле»
тест «свет-темнота»
тест «приподнятый крестообразный лабиринт»

Как цитировать

Лосева, Е. В., Логинова , Н. А., Руссу, Л. И., & Мезенцева, М. В. (2022). ПОВЕДЕНИЕ КРЫС В ТЕСТАХ НА ТРЕВОЖНОСТЬ ПРИ НЕПРОДОЛЖИТЕЛЬНОМ ИНТРАНАЗАЛЬНОМ ВВЕДЕНИИ ОДНОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК В ДВУХ НЕБОЛЬШИХ ДОЗАХ. Российский физиологический журнал им. И. М. Сеченова, 108(11), 1525–1541. https://doi.org/10.31857/S086981392211005X

Аннотация

Углеродные нанотрубки (УНТ) очень перспективны для использования в разных областях деятельности человека, в том числе и в медицине, но могут оказывать негативное воздействие на организм, в частности на нервную систему. УНТ в больших дозах в экспериментах на животных часто вызывают тревожно-депрессивные расстройства. Влияние малых доз УНТ на поведение животных мало изучено. В настоящей работе исследовали показатели поведения в тестах на тревожность у крыс, которым интраназально ежедневно в течение 4 дней вводили взвесь однослойных углеродных нанотрубок (ОСУНТ) в небольших дозах - 5.2 мкг/кг или 52 мкг/кг. Оказалось, что обе дозы ОСУНТ однонаправленно изменяли следующие показатели поведения у крыс: в тесте «открытое поле» снижалась исследовательская активность (стойки), в тесте «свет-темнота» увеличивались латентный период захода в тёмный отсек и выглядывания из него, в тесте «приподнятый крестообразный лабиринт» (ПКЛ) активировалось поведение в открытом рукаве. Однако, если доза 5.2 мкг/кг вызывала у крыс поведение с признаками ажитации (в тестах «свет-темнота» и ПКЛ усиление исследовательской активности, а в тесте ПКЛ и двигательной активности при частых посещениях разных отсеков лабиринта), то доза 52 мкг/кг, наоборот, тормозила ряд поведенческих реакций, что выражалось в усилении тревожности (увеличение показателей замирания в открытом поле и ПКЛ) и увеличении латентного периода входа в закрытый рукав ПКЛ. Предполагается, что разные небольшие дозы ОСУНТ, попадая при интраназальном введении в мозг крыс, могут неодинаково нарушать структурно-функциональное состояние клеток нервной ткани и/или вызывать нейровоспаление в структурах, задействованных в механизмах тревожности и сопутствующих состояний, в результате чего по-разному изменяется и поведение крыс в тестах на тревожность.

https://doi.org/10.31857/S086981392211005X
PDF

Литература

Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, Shimizu M, Narita N, Okamoto M, Kobayashi S, Nomura H, Kato H, Nishimura N, Taruta S, Endo M (2014) Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 114(11):6040–6079. https://doi.org/10.1021/cr400341h

Rezvova MA, Nikishau PA, Makarevich MI, Glushkova TV, Klyshnikov KY, Akentieva TN, Efimova OS, Nikitin AP, Malysheva VY, Matveeva VG, Senokosova EA, Khanova MY, Danilov VV, Russakov DM, Ismagilov ZR, Kostjuk SV, Ovcharenko EA (2022) Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene-b-isobutylene-b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility. Nanomaterials 12(5):733. https://doi.org/10.3390/nano12050733

Heller D, Jin H, Martinez B. Patel D, Miller BM, Yeung T-K, Jena PV, Höbartner C, Ha T, Silverman SK, Strano MS (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotech 4:114–120. https://doi.org/10.1038/nnano.2008.369

Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI (2019) Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics 11(3):E101. https://doi.org/10.3390/pharmaceutics11030101

Vidu R, Rahman M, Mahmoudi M, Enachescu M, Poteca TD, Opris I (2014) Nanostructures: a platform for brain repair and augmentation. Front Syst. Neurosci 8:91. https://doi.org/10.3389/fnsys.2014.00091. eCollection 2014.

Bokara KK, Kim JY, Lee YI, Yun K, Webster TJ, Lee JE (2013) Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anat Cell Biol 46(2):85–92. https://doi.org/10.5115/acb.2013.46.2.85

Moon SU, Kim J, Bokara KK, Kim JY, Khang D, Webster TJ, Lee JE (2012) Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine 7:2751–2765. https://doi.org/10.2147/IJN.S30273

Krestinin AV, Dremova NN, Knerel’man EI, Blinova LN, Zhigalina VG, Kiselev NA (2015) Characterization of SWCNT products manufactured in Russia and the prospects for their industrial application. Nanotechnologies in Russia 10:537–548. https://doi.org/10.1134/S1995078015040096.

Ema M, Gamo M, Honda K (2016) A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 74:42–63. https://doi.org/10.1016/j.yrtph.2015.11.015

Honda K, Naya M, Takehara H, Kataura H, Fujita K, Ema M (2017) A 104-week pulmonary toxicity assessment of long and short single-wall carbon nanotubes after a single intratracheal instillation in rats. Inhal Toxicol 29(11):471–482. https://doi.org/10.1080/08958378.2017.1394930

Ema M, Gamo M, Honda K (2016) Developmental toxicity of engineered nanomaterials in rodents. Toxicol Appl Pharmacol 299:47–52. https://doi.org/10.1016/j.taap.2015.12.015

Zhu S, Luo F, Li J, Zhu B, Wang GX (2018) Biocompatibility assessment of single-walled carbon nanotubes using Saccharomyces cerevisiae as a model organism. J Nanobiotechnol 16:44. https://doi.org/10.1186/s12951-018-0370-1

Bencsik A, Lestaevel P, Guseva Canu I (2018) Nano- and neurotoxicology: An emerging discipline. Prog Neurobiol 160:45–63. https://doi.org/10.1016/j.pneurobio.2017.10.003

Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI (2019) Neurotoxicity of Nanomaterials: An Up-to-Date Overview. Nanomaterials (Basel). 9(1):E96. https://doi.org/10.3390/nano9010096

Shipelin VA, Shumakova AA, Masyutin AG, Chernov AI, Sidorova YuS, Gmoshinski IV, Khotimchenko SA (2017) In Vivo Subacute Oral Toxicity Assessment of Multiwalled Carbon Nanotubes: Characteristic of Nanomaterial and Integral Indicators. Nanotechnologies in Russia 12(9-10):559–568. https://doi.org/10.1134/S199507801705010X

Sayapina NV, Batalova TA, Perel'man YM, Kuznetsov VL, Chaika VV, Sergievich AA, Golokhvast KS, Kolosov VP (2015) Multi-walled carbon nanotubes increase anxiety levels in rats and reduce exploratory activity in the open field test. Dokl Biol Sci 464(1):223–225. https://doi.org/10.7868/S0869565215250283.

Ivani S, Karimi I, Tabatabaei SR (2012) Biosafety of multiwalled carbon nanotube in mice: a behavioral toxicological approach. J Toxicol Sci 37(6):1191–1205. https://doi.org/10.2131/jts.37.1191

Ivani S, Karimi I, Tabatabaei SR., Syedmoradi L (2016) Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice. Toxicol Ind Health 32 (77):1293–1301. https://doi.org/10.1177/0748233714555388

Gholamine B, Karimi I, Salimi A, Mazdarani P, Becker LA (2017) Neurobehavioral toxicity of carbon nanotubes in mice. Toxicol Ind Health 33(4):340–350. https://doi.org/10.1177/0748233716644381

Antsiferova АА, Timerbulatova GA, Gabidinova GF, Nikitinc DO, Dimieve AM, Galyaltdinove ShF, Vershininf AV, Kashkarova PK, Fatkhutdinova LM (2020) The Influence of Multiwalled Carbon Nanotubes on the Behavior of Mammals after Single Intrapharyngeal or Intravenous Exposure. Nanotechnol Russ 15(2):241–247. https://doi.org/10.1134/S1995078020020044

Loseva E, Yuan TF, Karnup S (2009) Neurogliogenesis in the mature olfactory system: a possible protective role against infection and toxic dust. Brain Res Rev 59(2):374–387. https://doi.org/10.1016/j.brainresrev.2008.10.004

Md S, Mustafa G, Baboota S, Ali J (2015) Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 41(12):1922–1934. https://doi.org/10.3109/03639045.2015.1052081.

Kumar A, Pandey AN, Jain SK (2016) Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 23(3):681–693. https://doi.org/10.3109/10717544.2014.920431.

Loseva EV, Mezentseva MV, Russu LI, Loginova NA, Panov NV, Shchetvin MN, Suetina IA (2016) Suppression of cytokine synthesis in spleen and brain and small changes in c-fos expression in rat brain after intranasal administration of single-walled carbon nanotubes. Nanotechnol Russ 11(3–4):237–246. https://doi.org/10.1134/S1995078016020129

Ramos A, Pereira E, Martins GC, Wehrmeister TD, Izídio GS (2008) Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial. Behav Brain Res 193(2):277–288. https://doi.org/10.1016/j.bbr.2008.06.007.

Loseva EV, Loginova NA, Sarkisova KY, Klodt PM, Narkevich VB, Kudrin VS (2018) Behavioral Symptoms of Anxiety and Depression and Brain Monoamine Contents in Rats after Chronic Intranasal Administration of Interferon-α. Neurosci Behav Physi 48(8):954–962. https://doi.org/10.1007/s11055-018-0655-8

Walf AA, Frye ChA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328. https://doi.org/10.1038/nprot.2007.44

Grigoryeva VN, Tikhomirov GV (2019) Topographic Disorientation in Patients with Brain Damage. Neurosci Behav Physi 49:929–936. https://doi.org/10.1007/s11055-019-00821-0

Carrarini C, Russo M, Dono F, Barbone F, Rispoli MG, Ferri L, Di Pietro M, Digiovanni A, Ajdinaj P, Speranza R, Granzotto A, Frazzini V, Thomas A, Pilotto A, Padovani A, Onofrj M, Sensi SL, Bonanni L (2021) Agitation and Dementia: Prevention and Treatment Strategies in Acute and Chronic Conditions. Front Neurol 12:644317. https://doi.org/10.3389/fneur.2021.644317

Larsen JB, Stunes AK, Vaaler A, Reitan SK (2019) Cytokines in agitated and non-agitated patients admitted to an acute psychiatric department: A cross-sectional study. PLoS One 14(9):e0222242. https://doi.org/10.1371/journal.pone.0222242

Stopper CM, Floresco SB (2014) What's better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat Neurosci 17(1):33–35. https://doi.org/10.1038/nn.3587

Funahashi S (2017) Prefrontal contribution to decision-making under free-choice conditions. Front Neurosci 11:431. https://doi.org/10.3389/fnins.2017.00431

Vertechi P, Lottem E, Dario S, Godinho B, Treves I, Quendera T, Lohuis MNO, Mainen ZF (2020) Inference-Based Decisions in a Hidden State Foraging Task: Differential Contributions of Prefrontal Cortical Areas. Neuron 106(1):166-176.Е6. https://doi.org/10.1016/j.neuron.2020.01.017

Amemori K, Amemori S, Gibson DJ, Graybiel AM (2018) Striatal microstimulation induces persistent and repetitive negative decision-making predicted by striatal beta-band oscillation. Neuron 99(4):829–841. https://doi.org/10.1016/j.neuron.2018.07.022

McEwen BS, Nasca C, Gray JD (2016) Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 41(1):3–23. https://doi.org/10.1038/npp.2015.171

Mazzatenta A1, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27(26):6931–6936. https://doi.org/10.1523/JNEUROSCI.1051-07.2007

Cellot G1, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4(2):126–133. https://doi.org/10.1038/nnano.2008.374

Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C (2010) Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6(3):427–441. https://doi.org/10.1016/j.nano.2009.11.007

Zhu L, Chang DW, Dai L, Hong Y (2007) DNA Damage Induced by Multiwalled Carbon Nanotubes in Mouse Embryonic Stem Cells. Nano Lett 7(12):3592–3597. https://doi.org/10.1021/nl071303v

Villegas JC, Álvarez-Montes L, Rodríguez-Fernández L, González J, Valiente R, Fanarraga ML (2014) Multiwalled carbon nanotubes hinder microglia function interfering with cell migration and phagocytosis. Adv Healthc Mater 3(3):424–432. https://doi.org/10.1002/adhm.201300178

Aragon MJ, Topper L, Tyler CR, Sanchez B, Zychowski K, Young T, Herbert G, Hall P, Erdely A, Eye T, Bishop L, Saunders SA, Muldoon PP, Ottens AK, Campen MJ (2017) Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci USA 114(10):E1968–E1976. https://doi.org/10.1073/pnas.1616070114

Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology 4(2) 207–246. https://doi.org/10.3109/17435390903569639

Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, Gu AZ (2020) Toxicity of Single-Walled Carbon Nanotubes (SWCNTs): Effect of Lengths, Functional Groups and Electronic Structures Revealed by a Quantitative Toxicogenomics Assay. Environ Sci Nano 7(5):1348–1364. https://doi.org/10.1039/d0en00230e.

Lee S, Khang D, Kim SH (2015) High dispersity of carbon nanotubes diminishes immunotoxicity in spleen. Int J Nanomedicine 10(1):2697–2710. https://doi.org/10.2147/IJN.S80836

Zhang M, Yamaguchi T, Iijima S, Yudasaka M (2013) Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine 9(5):657–664. https://doi.org/10.1016/j.nano.2012.11.011

Dumortier H, Lacotte S, Pastorin G (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Letters 6(7):1522–1528. https://doi.org/10.1021/nl061160x.

Lu F, Gu L, Meziani MJ, Wang X, Luo PG, Veca LM, Cao L, Sun, Y-P (2009) Advances in Bioapplications of Carbon Nanotubes. Adv Mater 21(2):139–152. https://doi.org/10.1002/adma.200801491