ВЗАИМОСВЯЗЬ МИКРОБИОМА КРОВИ И СОДЕРЖАНИЯ НЕЙРОТРОФИНОВ ПРИ РАЗЛИЧНЫХ МЕТАБОЛИЧЕСКИХ ТИПАХ ОЖИРЕНИЯ
PDF

Ключевые слова

нейротрофины
ожирение
метаболически здоровое ожирение
метаболически нездоровое ожирение
микробиом крови
бактериальная ДНК крови
фактор роста нервов
нейротрофический фактор мозга
нейротропный фактор мозга
BDNF
NGF

Как цитировать

Колесникова, И. М., Гапонов, А. М., Румянцев, С. А., Карбышев, М. С., Григорьева, Т. В., Макаров, В. В., Юдин, С. М., Борисенко, О. В., & Шестопалов, А. В. (2022). ВЗАИМОСВЯЗЬ МИКРОБИОМА КРОВИ И СОДЕРЖАНИЯ НЕЙРОТРОФИНОВ ПРИ РАЗЛИЧНЫХ МЕТАБОЛИЧЕСКИХ ТИПАХ ОЖИРЕНИЯ. Российский физиологический журнал им. И. М. Сеченова, 108(11), 1482–1496. https://doi.org/10.31857/S0869813922110048

Аннотация

Микробная ДНК крови – один из патоген-ассоциированных молекулярных паттернов, сигнальные пути которого способны изменять экспрессию нейротрофинов, таких как нейротрофический фактор мозга (BDNF) и фактор роста нервов (NGF). Изучение нейротрофинов интересно при ожирении, так как оно сопряжено с риском развития нейропатий. При этом риск развития осложнений зависит от метаболического типа ожирения: при метаболически нездоровом типе (МНЗО) этот риск существенно выше, чем при метаболически здоровом (МЗО). Целью работы стало изучение взаимосвязи между отдельными таксонами микробиома крови и сывороточными концентрациями BDNF и NGF при различных метаболических типах ожирения. У здоровых доноров содержание таксонов – обитателей почв и вод было негативно взаимосвязано с содержанием BDNF, тогда как при ожирении, особенно МНЗО, эта связь носила положительный характер. У пациентов с ожирением с уровнем BDNF негативно ассоциировались таксоны – представители флоры желудка (Helicobacter pylori) и кишечника (Sutterella spp.). Содержание NGF у здоровых лиц было позитивно ассоциировано с Akkermansia muciniphila – таксоном, участвующим в поддержании целостности кишечной стенки и снижающим кишечную проницаемость. У пациентов с МНЗО положительная связь была отмечена между уровнем NGF и Ruminococcus bromii. Для здоровых доноров и пациентов с МНЗО, но не с МЗО, были также выявлены многочисленные негативные взаимосвязи между таксонами – представителями кишечной флоры и концентрацией NGF. В целом, влияние микробной ДНК крови на сывороточную концентрацию нейротрофинов зависит от источников транслокации, проницаемости внешних барьеров, особенностей микробиомов (кишечника, кожи и т.д.), а также наличия или отсутствия метаболических нарушений у пациентов с разной массой тела.

https://doi.org/10.31857/S0869813922110048
PDF

Литература

NCD Risk Factor Collaboration (NCD-RisC) (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387:1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X

Iacobini C, Pugliese G, Blasetti Fantauzzi C, Federici M, Menini S (2019) Metabolically healthy versus metabolically unhealthy obesity. Metabolism 92:51–60. https://doi.org/10.1016/j.metabol.2018.11.009

Stino AM, Smith AG (2017) Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diabetes Invest 8:646–655. https://doi.org/10.1111/jdi.12650

Rios M (2014) Neurotrophins and the regulation of energy balance and body weight. Handb Exp Pharmacol 220:283–307. https://doi.org/10.1007/978-3-642-45106-5_11

Cao Y, Wang H, Zeng W (2018) Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging. Protein Cell 9:527–539. https://doi.org/10.1007/s13238-018-0528-5

Camerino C, Conte E, Cannone M, Caloiero R, Fonzino A, Tricarico D (2016) Nerve growth factor, brain-derived neurotrophic factor and osteocalcin gene relationship in energy regulation, bone homeostasis and reproductive organs analyzed by mrna quantitative evaluation and linear correlation analysis. Front Physiol 7:1–9. https://doi.org/10.3389/fphys.2016.00456

Tseng C, Wu C (2018) The gut microbiome in obesity. J Formos Med Assoc 1–7. https://doi.org/10.1016/j.jfma.2018.07.009

Jamar G, Ribeiro DA, Pisani LP (2020) High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr 1–19. https://doi.org/10.1080/10408398.2020.1747046

Margolis KG, Cryan JF, Mayer EA (2022) The Microbiota-Gut-Brain Axis : From Motility to Mood. Gastroenterology 160:1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066

Massier L, Blüher M, Kovacs P, Chakaroun RM (2021) Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Front Endocrinol (Lausanne) 12:1–18. https://doi.org/10.3389/fendo.2021.616506

Шестопалов АВ, Колесникова ИМ, Гапонов АМ, Григорьева ТВ, Хуснутдинова ДР, Камальдинова ДР, Волкова НИ, Макаров ВВ, Юдин СМ, Румянцев АГ, Румянцев СА (2022) Влияние метаболического типа ожирения на микробиом крови. Вопр биол мед фармацевт химии 25:35–41. [Shestopalov AV, Kolesnikova IM, Gaponov AM, Grigoryeva TV, Khusnutdinova DR, Kamaldinova DR, Volkova NI, Makarov VV, Yudin SM, Rumyantsev AG, Rumyantsev SA (2022) Effect of metabolic type of obesity on blood microbiome. Problems Biol Med Pharmac Chem 25(2):35−41. (In Russ)]. https://doi.org/10.29296/25877313-2022-02-06

Kumagai Y, Takeuchi O, Akira S (2008) TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev 60:795–804. https://doi.org/10.1016/j.addr.2007.12.004

Thomalla M, Schmid A, Neumann E, Pfefferle PI, Müller-Ladner U, Schäffler A, Karrasch T (2019) Evidence of an anti-inflammatory toll-like receptor 9 (TLR 9) pathway in adipocytes. J Endocrinol 240:325–343. https://doi.org/10.1530/JOE-18-0326

Guillemot-Legris O, Muccioli GG (2017) Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci 40:237–253. https://doi.org/10.1016/j.tins.2017.02.005

Kumar V (2019) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332:16–30. https://doi.org/10.1016/j.jneuroim.2019.03.012

Cheng Z, Abrams ST, Austin J, Toh J, Wang SS, Wang Z, Yu Q, Yu W, Toh CH, Wang G (2020) The Central Role and Possible Mechanisms of Bacterial DNAs in Sepsis Development. Mediators Inflamm 2020:7418342. https://doi.org/10.1155/2020/7418342

Motwani M, Pesiridis S, Fitzgerald KA (2019) DNA sensing by the cGAS–STING pathway in health and disease. Nat Rev Genet 20:657–674. https://doi.org/10.1038/s41576-019-0151-1

Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B, Cai H, Yin D, Hu D, Li Z, Chen H, Gao X, Wang F, O’Connor JC, Xu Y, Liu M, Dong LQ, Liu F (2017) DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U S A 114:12196–12201. https://doi.org/10.1073/pnas.1708744114

Bai J, Cervantes C, He S, He J, Plasko GR, Wen J, Li Z, Yin D, Zhang C, Liu M, Dong LQ, Liu F (2020) Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun Biol 3:257. https://doi.org/10.1038/s42003-020-0986-1

Kumari P, Russo AJ, Shivcharan S, Rathinam VA (2021) AIM2 in health and disease : inflammasome and beyond. Immunol Rev 297:83–95. https://doi.org/10.1111/imr.12903.AIM2

Engin AB (2017) Adipocyte-Macrophage Cross-Talk in Obesity. Adv Exp Med Biol 960:327–343. https://doi.org/10.1007/978-3-319-48382-5_14

Murphy AJ, Kraakman MJ, Kammoun HL, Dragoljevic D, Lee MKS, Lawlor KE, Wentworth JM, Vasanthakumar A, Gerlic M, Whitehead LW, DiRago L, Cengia L, Lane RM, Metcalf D, Vince JE, Harrison LC, Kallies A, Kile BT, Croker BA, Febbraio MA, Masters SL (2016) IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metab 23:155–164. https://doi.org/10.1016/j.cmet.2015.09.024

Heese K, Fiebich BL, Bauer J, Otten U (1998) NF-kappaB modulates lipopolysaccharide-induced microglial nerve growth factor expression. Glia 22:401–407. https://doi.org/10.1002/(sici)1098-1136(199804)22:4<401::aid-glia9>3.0.co;2-5

Heese K, Inoue N, Sawada T (2006) NF-κB Regulates B-Cell-Derived Nerve Growth Factor Expression. Cell Mol Immunol 3:63–66.

Minnone G, De Benedetti F, Bracci-Laudiero L (2017) NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci 18. https://doi.org/10.3390/ijms18051028

Rage F, Silhol M, Tapia-Arancibia L (2006) IL-1beta regulation of BDNF expression in rat cultured hypothalamic neurons depends on the presence of glial cells. Neurochem Int 49:433–441. https://doi.org/10.1016/j.neuint.2006.03.002

Expert panel on detection evaluation and treatment of high blood cholesterol in adults (2001) Executive summary of the third report (NCEP) - adult treatment panel III. J Am Med Assoc 285:2486–2497. https://doi.org/10.1001/jama.285.19.2486

Kolesnikova IM, Rumyantsev SA, Volkova NI, Gaponov AM, Grigor’eva T V, Laikov AV, Makarov VV, Yudin SM, Borisenko OV, Shestopalov AV (2022) Influence of Obesity and Its Metabolic Type on the Serum Concentration of Neurotrophins. Neurochem J 16:200–206. https://doi.org/10.1134/S1819712422020088

Hirt PA, Castillo DE, Yosipovitch G, Keri JE (2019) Skin changes in the obese patient. J Am Acad Dermatol 81:1037–1057. https://doi.org/10.1016/j.jaad.2018.12.070

Son MJ, Yang G-J, Jo E-H, Shim Y-H, Kang S-J, Hong J-E, Kim Y-E, Lee J-E, Chun J, Park S, Jung J, Park M-C (2019) Association of atopic dermatitis with obesity via a multi-omics approach: A protocol for a case-control study. Medicine (Baltimore) 98:e16527. https://doi.org/10.1097/MD.0000000000016527

Guseva D, Rüdrich U, Kotnik N, Gehring M, Patsinakidis N, Agelopoulos K, Ständer S, Homey B, Kapp A, Gibbs BF, Ponimaskin E, Raap U (2020) Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis. Clin Exp Allergy 50:577–584. https://doi.org/10.1111/cea.13560

Sideleva O, Black K, Dixon A (2013) Effects of obesity and weight loss on airway physiology and inflammation in asthma. Pulm Pharmacol Ther 26:455–458. https://doi.org/10.1201/b13996-3

Sreter KB, Popovic-Grle S, Lampalo M, Konjevod M, Tudor L, Nikolac Perkovic M, Jukic I, Bingulac-Popovic J, Safic Stanic H, Markeljevic J, Pivac N, Svob Strac D (2020) Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration and BDNF/TrkB Gene Polymorphisms in Croatian Adults with Asthma. J Pers Med 10. https://doi.org/10.3390/jpm10040189

Pascal M, Perez-Gordo M, Caballero T, Escribese MM, Lopez Longo MN, Luengo O, Manso L, Matheu V, Seoane E, Zamorano M, Labrador M, Mayorga C (2018) Microbiome and Allergic Diseases. Front Immunol 9:1584. https://doi.org/10.3389/fimmu.2018.01584

Zhang L, Yin Y, Zhang H, Zhong W, Zhang J (2017) Association of asthma diagnosis with leptin and adiponectin: a systematic review and meta-analysis. J Investig Med Off Publ Am Fed Clin Res 65:57–64. https://doi.org/10.1136/jim-2016-000127

Jiménez-Cortegana C, Ortiz-García G, Serrano A, Moreno-Ramírez D, Sánchez-Margalet V (2021) Possible Role of Leptin in Atopic Dermatitis : A Literature Review. Biomolecules 11:1–11. https://doi.org/10.3390/biom11111642

Li C, Meng F, Lei Y, Liu J, Liu J, Zhang J, Liu F, Liu C, Guo M, Lu X-Y (2021) Leptin regulates exon-specific transcription of the Bdnf gene via epigenetic modifications mediated by an AKT/p300 HAT cascade. Mol Psychiatry 26:3701–3722. https://doi.org/10.1038/s41380-020-00922-0

Rohm T V, Fuchs R, Müller RL, Keller L, Baumann Z, Bosch AJT, Schneider R, Labes D, Langer I, Pilz JB, Niess JH, Delko T, Hruz P, Cavelti-Weder C (2021) Obesity in Humans Is Characterized by Gut Inflammation as Shown by Pro-Inflammatory Intestinal Macrophage Accumulation. Front Immunol 12:668654. https://doi.org/10.3389/fimmu.2021.668654

Kim C-S, Cha L, Sim M, Jung S, Chun WY, Baik HW, Shin D-M (2021) Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J Gerontol A Biol Sci Med Sci 76:32–40. https://doi.org/10.1093/gerona/glaa090

Geerlings SY, Kostopoulos I, de Vos WM, Belzer C (2018) Akkermansia muciniphila in the human gastrointestinal tract: When, where, and how? Microorganisms 6:1–26. https://doi.org/10.3390/microorganisms6030075

Portincasa P, Bonfrate L, Khalil M, De Angelis M, Calabrese FM, D’amato M, Wang DQH, Di Ciaula A (2022) Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 10:1–62. https://doi.org/10.3390/biomedicines10010083

Zhang T, Li Q, Cheng L, Buch H, Zhang F (2019) Akkermansia muciniphila is a promising probiotic. Microb Biotechnol 12:1109–1125. https://doi.org/10.1111/1751-7915.13410

Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y (2020) Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.00219

Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License. https://smart.servier.com/. Accessed 6 Jul 2022

Rosés C, Cuevas-Sierra A, Quintana S, Riezu-Boj JI, Martínez JA, Milagro FI, Barceló A (2021) Gut Microbiota Bacterial Species Associated with Mediterranean Diet-Related Food Groups in a Northern Spanish Population. Nutrients 13. https://doi.org/10.3390/nu13020636

Long X, Li M, Li L-X, Sun Y-Y, Zhang W-X, Zhao D-Y, Li Y-Q (2018) Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor. Neurogastroenterol Motil 30:e13227. https://doi.org/10.1111/nmo.13227