ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ МИКРОГЛИИ СПИННОГО МОЗГА КРЫС
PDF

Ключевые слова

старение
микроглия
спинной мозг
иммуногистохимия
белок Iba-1

Как цитировать

Колос, Е. А., & Коржевский, Д. Э. (2022). ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ МИКРОГЛИИ СПИННОГО МОЗГА КРЫС. Российский физиологический журнал им. И. М. Сеченова, 108(7), 890–902. извлечено от https://rusjphysiol.org/index.php/rusjphysiol/article/view/1646

Аннотация

Целью настоящего исследования явилась оценка изменений микроглии в различных областях шейного отдела спинного (СМ) мозга молодых (4 месяца) и стареющих (18 месяцев) крыс с использованием иммуногистохимических маркеров. Для идентификации клеток микроглии применяли антитела к кальций-связывающему белку Iba-1. Для оценки изменения количества нейронов СМ при старении использовали антитела к ядерному антигену нервных клеток (NeuN).

В работе выявлены региональные различия реакции микроглиоцитов на старение. Установлено, что реактивные изменения микроглиоцитов у стареющих крыс более выражены в белом, а не в сером веществе, что, вероятно, связано с активными процессами де- и ремиелинизации нервных волокон СМ, характерными для поздних стадий онтогенеза. Отмечено, что наибольшие изменения претерпевает микроглия дорсального и вентрального канатика. Известно, что именно эти пути обеспечивают восприятие сенсорной информации от внешних раздражителей, оценку ее интенсивности, типа и последующую двигательную активность. В области дорсального и вентрального канатиков идентифицированы ранее не-описанные исследователями скопления (агрегаты) активированных микроглиоцитов, предположительно участвующих в процессах демиелинизации. Полученные результаты свидетельствуют в пользу участия микроглии в сенсорных нарушениях, связанных со старением.

PDF

Литература

Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359–1369. https://doi.org/10.1038/s41593-018-0242-x

Xu Y, Jin MZ, Yang ZY, Jin WL (2021) Microglia in neurodegenerative diseases. Neural Regen Res 16:270–280. https://doi.org/10.4103/1673-5374.290881

Yoo H-J, Kwon M-S (2021) Aged microglia in neurodegenerative diseases: microglia lifespan and culture methods. Front Aging Neurosci 13:766267. https://doi.org/10.3389/fnagi.2021.766267

Tremblay MÈ (2011) The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. Neuron Glia Biol 7(1):67–76. https://doi.org/10.1017/S1740925X12000038

Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

Kolos EA, Korzhevskii DE (2020) Spinal cord microglia in health and disease. Acta Naturae 12(1):4–17. https://doi.org/10.32607/actanaturae.10934

Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011). Age-related alterations in the dynamic behavior of microglia. Aging Cell 10:263–276. https://doi.org/10.1111/j.1474-9726.2010.00660.x

Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ (2012). Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 33:195 e1–e12. https://doi.org/10.1016/j.neurobiolaging.2010.05.008

Hart AD, Wyttenbach A, Perry VH, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26:754–765. https://doi.org/10.1016/j.bbi.2011.11.006

Nikodemova M, Small AL, Kimyon RS, Watters JJ (2016) Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol Genomics 48(5):336–344. https://doi.org/10.1152/physiolgenomics.00129.2015

Stojiljkovic MR, Ain Q, Bondeva T, Heller R, Schmeer C, Witte OW (2019) Phenotypic and functional differences between senescent and aged murine microglia. Neurobiol Aging 74:56–69. https://doi.org/10.1016/j.neurobiolaging.2018.10.007

Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34:721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005

Streit WJ, Xue Q-S (2010) The brain’s aging immune system. Aging Dis 1(3):254–261.

Tomasi D, Volkow ND (2012) Aging and functional brain networks. Mol Psychiatry 17:549–558. https://doi.org/10.1038/mp.2011.81

von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124. https://doi.org/10.3389/fnagi.2015.00124

Salas IH, Burgado J, Allen NJ (2020) Glia: victims or villains of the aging brain? Neurobiol Disease 143:105008. https://doi.org/10.1016/j.nbd.2020.105008

Costa J, Martins S, Ferreira PA, Cardoso AMS, Guedes JR, Peça J, Cardoso AL (2021). The old guard: Age-related changes in microglia and their consequences. Mech Ageing Dev 197:111512. https://doi.org/10.1016/j.mad.2021.111512

Xuan FL, Chithanathan K, Lilleväli K, Yuan X, Tian L (2019) Differences of microglia in the brain and the spinal cord. Front Cell Neurosci 14(13):504. https://doi.org/10.3389/fncel.2019.00504

Kullberg S, Aldskogius H, Ulfhake B (2001) Microglial activation, emergence of ED1-expressing cells and clusterin upregulation in the aging rat CNS, with special reference to the spinal cord. Brain Res 899:169–186. https://doi.org/10.1016/S0006-8993(01)02222-3

Chung JY, Choi JH, Lee CH, Yoo KY, Won MH, Yoo DY, Kim DW, Choi SY, Youn HY, Moon SM, Hwang IK (2010) Comparison of ionized calcium-binding adapter molecule 1-immunoreactive microglia in the spinal cord between young adult and aged dogs. Neurochem Res 35:620–627. https://doi.org/10.1007/s11064-009-0108-4

Lee S, Wu Y, Shi XQ, Zhang J (2015) Characteristics of spinal microglia in aged and obese mice: potential contributions to impaired sensory behavior. Immunity & Ageing 12:22. https://doi.org/10.1186/s12979-015-0049-5

Ritzel RM, Patel AR, Pan S, Crapser J, Hammond M, Jellison E, McCullough LD (2015) Age- and location-related changes in microglial function. Neurobiol Aging 36:2153–2163. https://doi.org/10.1016/j.neurobiolaging.2015.02.016

Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP (2015) Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde Eur J Histochem 59(3):233–237. https://doi.org/10.4081/ejh.2015.2530

Kongsui R, Beynon SB, Johnson SJ, Walker FR (2014) Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. J Neuroinflam 11:182. https://doi.org/10.1186/s12974-014-0182-7

Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:142. https://doi.org/10.1186/s40478-014-0142-6

Tremblay ME, Zettel ML, Ison, JR, Allen PD, Majewska AK (2012). Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60:541–558. https://doi.org/10.1002/glia.22287

Shahidehpour RK, Higdon RE, Crawford NG, Neltner JH, Ighodaro ET, Patel E, Price D, Nelson PT, Bachstetter AD (2021) Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol Aging 99:19–27. https://doi.org/10.1016/j.neurobiolaging.2020.12.003

Bliederhaeuser C, Grozdanov V, Speidel A, Zondler L, Ruf W P, Bayer H, Kiechle M, Feiler MS, Freischmidt A, Brenner D, Witting A, Hengerer B, Fändrich M, Ludolph AC, Weishaupt JH, Gillardon F, Danzer KM. (2016). Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathol 131:379–391. https://doi.org/10.1007/s00401-015-1504-2

Yanguas-Casás N, Crespo-Castrillo A, Arevalo MA, Garcia-Segura LM (2020) Aging and sex: Impact on microglia phagocytosis. Aging Cell 19(8): e13182. https://doi.org/10.1111/acel.13182

Zhang B, Gensel JC (2014) Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 258:112–120. https://doi.org/10.1016/j.expneurol.2014.04.007

Maxwell N, Castro RW, Sutherland NM, Vaughan KL, Szarowicz MD, de Cabo R, Mattison A, Valdez G (2018) α-Motor neurons are spared from aging while their synaptic inputs degenerate in monkeys and mice. Aging Cell 17:e12726. https://doi.org/10.1111/acel.12726

Azam S, Haque M, Kim IS, Choi DK (2021) Microglial turnover in ageing-related neurodegeneration: therapeutic avenue to intervene in disease progression. Cells 10(1):150. https://doi.org/10.3390/cells10010150

Carvalho WA, Bahia CP, Teixeira JC, Gomes-Leal W, Pereira A (2017) Interlimb Dynamic after Unilateral Focal Lesion of the Cervical Dorsal Corticospinal Tract with Endothelin-1. Front Neuroanat 11:89. https://doi.org/10.3389/fnana.2017.00089

Bieler L, Grassner L, Zaunmair P, Kreutzer C, Lampe L, Trinka E, Marschallinger J, Aigner L, Couillard-Despres S (2018) Motor deficits following dorsal corticospinal tract transection in rats: voluntary versus skilled locomotion readouts. Heliyon 4:e00540. https://doi.org/10.1016/j.heliyon.2018.e00540

Moreno-López Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G (2016) Sensorimotor Integration by Corticospinal System. Front Neuroanat 10:24 https://doi.org/10.3389/fnana.2016.00024

Alam M, Garcia-Alias G, Jin B, Keyes J, Zhong H, Roy RR, Gerasimenko Y, Lu DC, Edgerton VR (2017) Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats. Exp Neurol 291:141–150. https://doi.org/10.1016/j.expneurol.2017.02.006

Xie F, Zhang JC, Fu H, Chen J (2013) Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. Int J Mol Med 32:1021–1028. https://doi.org/10.3892/ijmm.2013.1486

Bergman E, Ulfhake B (1998) Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning. J Comp Neurol 396:211–222.

Pannese E, Sartori P, Martinelli C, Ledda M (1998) Age-related decrease in the overall extent of perikaryal projections in rabbit spinal ganglion neurons. Neurosci Lett 254:177–179.

Vaughan SK, Stanley OL, Valdez G (2017) Impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers in mice. J Gerontol A Biol Sci Med Sci 72(6):771–779. https://doi.org/10.1093/gerona/glw175

Kolos EA, Korzhevskii DE (2020) Immunohistological detection of active satellite cellsin rat dorsal root ganglia after parenteral administration of lipopolysaccharide and during aging. Bull Exp Biol Med 169(5):665–668. https://doi.org/10.1007/s10517-020-04950-2

Thériault P, Rivest S (2016) Microglia: senescence impairs clearance of myelin debris. Current Biol 26(16):R772–R775. https://doi.org/10.1016/j.cub.2016.06.066

Pinto MV, Fernandes A (2020) Microglial phagocytosis-rational but challenging therapeutic target in multiple sclerosis. Int J Mol Sci 21(17):5960. https://doi.org/10.3390/ijms21175960

Sen MK, Mahns DA, Coorssen JR, Shortland PJ (2022) The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 70(7):1215–1250. https://doi.org/10.1002/glia.24148

Rawji KS, Kappen J, Tang W, Teo W, J PlemelR, Stys PK, Yong VW (2018) Deficient surveillance and phagocytic activity of myeloid cells within demyelinated lesions in aging mice visualized by ex vivo live multiphoton imaging. J Neurosci 38 (8):1973–1988. https://doi.org/10.1523/JNEUROSCI.2341-17.2018

Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, Yong VW, Stys PK, Tremblay MÈ, Rivest S (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med 212 (4):481–495. https://doi.org/10.1084/jem.20141656

Lloyd AF, Miron VE (2019) The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 15(8):447–458. https://doi.org/10.1038/s41582-019-0184-2

Shen K, Reichelt M, Kyauk R, Ngu H, Shen Y, Foreman O, Modrusan Z, Friedman BA, Sheng M, Yuen TJ (2021) Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep 34(10):108835. https://doi.org/10.1016/j.celrep.2021.108835