ОРЕКСИН-ИММУНОПОЗИТИВНЫЕ СТРУКТУРЫ РЕТИКУЛЯРНОГО ЯДРА ТАЛАМУСА
PDF

Ключевые слова

орексины
ретикулярное ядро таламуса
гипоталамус
онтогенез
депривация сна
стресс

Как цитировать

Морина, И. Ю., & Романова, И. В. (2022). ОРЕКСИН-ИММУНОПОЗИТИВНЫЕ СТРУКТУРЫ РЕТИКУЛЯРНОГО ЯДРА ТАЛАМУСА. Российский физиологический журнал им. И. М. Сеченова, 108(7), 836–849. извлечено от https://rusjphysiol.org/index.php/rusjphysiol/article/view/1632

Аннотация

У лабораторных млекопитающих (половозрелые крысы линии Вистар и Sprague-Dawley, мыши С57Bl/6J) в нейронах различных отделов ретикулярного ядра таламуса выявлены орексин-А и орексин-В, уровень иммунореактивности которых значительно ниже, чем в нейронах перифорникальной области гипоталамуса. У крыс Вистар в экспериментах с 6-часовой депривацией сна и 3-часовой иммобилизацией на спине выявлены разнонаправленные реакции орексин-иммунопозитивных нейронов в этих структурах мозга. Показано, что в ходе эмбрионального развития крыс Вистар в таламусе орексин-иммунопозитивные структуры идентифицируются уже на стадии Е18, слабо развиты на стадии Р14 и формируются к 30-му дню жизни, что совпадает с периодом становления цикла бодрствование-сон у крыс. Полученные данные свидетельствуют о том, что орексины ретикулярного ядра таламуса также вовлечены в регуляцию цикла бодрствование-сон.

PDF

Литература

de Lecea L, Kilduff TS, Peyron C, Gao X-B, Foye PE, Danielson PE, Fukuhara C, Battenberg ELF, Gautvik V, Bartlett FS, Frankel WN, Van Den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A Neurobiology 95 (1):322–327. https://doi.org/10.1073/pnas.95.1.322

Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92 (4):573–585. https://doi.org/10.1016/s0092-8674(00)80949-6

Nakamura T, Uramura K, Nambu T, Yada T, Goto K, Yanagisawa M, Sakurai T (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res 873(1):181–187. https://doi.org/10.1016/s0006-8993(00)02555-5

Sakuraia Т (2005) Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep MedRev 9(4):231–241. https://doi.org/10.1016/j.smrv.2004.07.007

Sargin D (2018) The role of the orexin system in stress response. Neuropharmacology 154:68–78. https://doi.org/10.1016/j.neuropharm.2018.09.034

Waleh NS, Apte-Deshpande A, Terao A, Ding J, Kilduff TS (2001) Modulation of the promoter region of prepro-hypocretin by alpha-interferon. Gene 262 (1-2):123–128. https://doi.org/10.1016/s0378-1119(00)00544-8

Hara J, Yanagisawa M, Sakurai T (2005) Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett 380(3):239–242. https://doi.org/10.1016/j.neulet.2005.01.046

Morina IYu, Stankova EP, Romanova IV (2020) Effects of prenatal stress on the formation of the orexinergic system of the hypothalamus in rats. Neurosci Behav Physiol 50:607–617. DOI 10.1007/s11055-020-00942-x

Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot ES (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98 (3):365–376. https://doi.org/10.1016/s0092-8674(00)81965-0

Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451. https://doi.org/10.1016/s0092-8674(00)81973-x

Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, LiR, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med 6(9):991–997. https://doi.org/10.1038/79690

Abrahamson EE, Leak RK, Moore RYT (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12(2):435–440. https://doi.org/10.1097/00001756-200102120-00048

Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A (2016) Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19:290–298. https://doi.org/10.1038/nn.4209

Steriade M, Domich L, Oakson G, Descheˆnes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. Neurophysiology 57(1):260–273. https://doi.org/10.1152/jn.1987.57.1.260

Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half a century. Comp Neurol 463(3):360–371. https://doi.org/10.1002/cne.10738

Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Rev 46(1):1–31. https://doi.org/10.1016/j.brainresrev.2004.04.008

Spreafico R, de Curtis M, Frassoni C, Avanzini G (1988) Electrophysiological characteristics of morphologically identified reticular thalamic neurons from rat slices. Neuroscience 27:629–638. https://doi.org/10.1016/0306-4522(88)90294-1

Houser CR, Vaughn JE, Barber R.P, Roberts E (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200(2):341–354. https://doi.org/10.1016/0006-8993(80)90925-7

Lizier C, Spreafico R, Battaglia G (1997) Calretinin in the thalamic reticular nucleus of the rat: distribution and relationship with ipsilateral and contralateral efferents. Comp Neurol 377(2):217–233. https://doi.org/10.1002/(sici)1096-9861(19970113)377:2<217::aid-cne5>3.0.co;2-6

Bartho P, Payne JA, Freund TF, Acsady L (2004) Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei. Eur J Neurosci 20(4):965–975. https://doi.org/10.1111/j.1460-9568.2004.03562.x

Contreras-Rodriguez J, Gonzalez-Soriano J, Martinez-Sainz P, Marin-Garcia P, Rodriguez-Veiga E (2003) Neurochemical heterogeneity of the thalamic reticular and perireticular nuclei in developing rabbits: patterns of calbindin expression. Brain Res Dev Brain Res 144(2):211–221. https://doi.org/10.1016/ s0165-3806(03)00194-9

Segerson TP, Hoefler H, Childers H, Wolfe HJ, Wu P, Jackson IM, Lechan RM (1987) Localization of thyrotropin-releasing hormone prohormone messenger ribonucleic acid in rat brain in situ hybridization. Endocrinology 121(1):98–107. https://doi.org/10.1210/endo-121-1-98

Burgunder, JM, Heyberger B, Lauterburg T (1999) Thalamic reticular nucleus parcellation delineated by VIP and TRH gene expression in the rat. Chem Neuroanat 17(3):147–152. https://doi.org/10.1016/s0891-0618(99)00033-2

Roland BL, Sutton SW, Wilson SJ, Luo L, Pyati J, Huvar R, Erlander MG, Lovenberg TW (1999) Anatomical distribution of prolactin-releasing peptide and its receptor suggests reticular nucleus regulation of local sleep additional functions in the central nervous system and periphery. Endocrinology 140(12):5736–5745. https://doi.org/10.1210/en.140.12.5736

Crabtree JW (1996) Organization in the somatosensory sector of the cat’s thalamic reticular nucleus. Comp Neurol 366(2):207–222. https://doi.org/10.1002/(SICI)1096-9861(19960304)366:2<207::AID-CNE2>3.0.CO;2-9.26

Shosaku A, Sumitomo I (1983) Auditory neurons in the rat thalamic reticular nucleus. Exp Brain Res 49(3):432–442. https://doi.org/10.1007/BF00238784

Hayama T, Hashimoto K, Ogawa H (1994) Anatomical location of a taste-related region in the thalamic reticular nucleus in rats. Neurosci Res 18(4):291–299. https://doi.org/10.1016/0168-0102(94)90165-1

Stehberg J, Acuna-Goycolea C, Ceric F, Torrealba F (2001) The visceral sector of the thalamic reticular nucleus in the rat. Neuroscience 106(4):745–755. https://doi.org/10.1016/s0306-4522(01)00316-5

Vantomme G, Osorio-Forero A, Lüthi A, Fernandez LMJ (2019) Regulation of local sleep by the thalamic reticular nucleus. Front Neurosci 13:576. https://doi.org/10.3389/fnins.2019.00576

Gonzalo-Ruiz A, Lieberman AR (1995) GABAergic projections from the thalamic reticular nucleus to the anteroventral and anterodorsal thalamic nuclei of the rat. Chem Neuroanat 9 (3):165–174. https://doi.org/10.1016/0891-0618(95)00078-x

Zikopoulos B, Barbas H (2007) Circuits for multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Rev Neurosci 18(6):417–438. https://doi.org/10.1515/revneuro.2007.18.6.417

MacDonald EE, Volkoff H (2010) Molecular cloning and characterization of preproorexin in winter skate (Leucoraja ocellata). Gen Compar Endocrinol 169(3):192–196. https://doi.org/10.1016/j.ygcen.2010.09.014

Romanova IV, Mikhrina AL (2013) Participation of Agouti related peptide in mеchanisms of wakefulness-sleep cycle regulation. Human Physiol 39(6):584–589. PMID: 25509169

Morina IYu, Mikhailova EV, Romanova IV (2021) Studies of the effects of monoamines on orexinergic neurons in the hypothalamus of rat embryos. Neurosci Behav Physiol 51:350–356. https://doi.org/10.1007/s11055-021-01078-2

Paxinos GT, Watson Ch (1998) The rat brain in stereotaxic coordinates. (Fourth Edition). Acad Press. San Diego, California, USA. Int Standard Book Number: 0-12-547617-5 CD-ROM.

Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Acad Press 001. Int Standard Book Number: 0-12-547636-1 CD-ROM.

Coggeshall RE (1964) A Study of diencephalic development in the albino rat. J Comp Neurol 122(2):241–299. https://doi.org/10.1002/cne.901220208

Steininger TL, Kilduff TS, Behan M, Benca RM, Landry CF (2004) Comparison of hypocretin/orexin and melanin-concentrating hormone neurons and axonal projections in the embryonic and postnatal rat brain. J Chem Neuroanat 27(3):165–181. https://doi.org/10.1016/j.jchemneu.2004.02.007

Aristakesian EA (1997) Comparative neurophysiological analysis of the waking-sleeping cycle during the early postnatal ontogeny in rats and guinea pigs. J Evol Biochem Physiol 33(6): 545–550.