ВЛИЯНИЕ ОКСИДА АЗОТА НА ЭЛЕКТРИЧЕСКУЮ АКТИВНОСТЬ ТРОЙНИЧНОГО НЕРВА И СОСТОЯНИЕ ТУЧНЫХ КЛЕТОК ТВЕРДОЙ МОЗГОВОЙ ОБОЛОЧКИ КРЫСЫ
PDF

Ключевые слова

оксид азота
L-аргинин
мигрень
крыса
тройничный нерв
гуанилатциклаза
тучные клетки

Как цитировать

Королёва, К. С., Свитко, С. О., Нурмиева, Д. А., Гафуров, О. Ш., Буглинина, А. Д., & Ситдикова, Г. Ф. (2022). ВЛИЯНИЕ ОКСИДА АЗОТА НА ЭЛЕКТРИЧЕСКУЮ АКТИВНОСТЬ ТРОЙНИЧНОГО НЕРВА И СОСТОЯНИЕ ТУЧНЫХ КЛЕТОК ТВЕРДОЙ МОЗГОВОЙ ОБОЛОЧКИ КРЫСЫ. Российский физиологический журнал им. И. М. Сеченова, 108(6), 745–761. https://doi.org/10.31857/S0869813922060048

Аннотация

Оксид азота (NO) – представитель семейства газомедиаторов, участвующих в регуляции различных биологических процессов. Нитроглицерин, донор NO, широко используется для моделирования мигрени как у человека, так и у животных. Однако роль периферических нейрональных структур в эффектах NO практически не изучена. Целью работы являлось выявление эффектов NO на электрическую активность тройничного нерва и состояние тучных клеток оболочек головного мозга крыс. В работе использовали электрофизиологический метод регистрации потенциалов действия (ПД) тройничного нерва крыс, иннервирующего твёрдую мозговую оболочку, в препарате получерепа крысы. Для анализа электрической активности использовали метод кластеризации, позволяющий разбить ПД на группы с близкими характеристиками, генерируемые отдельными волокнами. Морфологию тучных клеток оценивали путем окрашивания оболочек головного мозга крыс толуидиновым синим. Субстрат синтеза NO – L-аргинин дозозависимо увеличивал электрическую активность тройничного нерва, и этот эффект отменялся на фоне блокатора синтеза NO – L-NAME (100 мкМ). Экзогенный донор NO – нитропруссид натрия (НПН 200 мкМ) вызывал усиление частоты ПД, тогда как инактивированный светом НПН не оказывал влияния на частоту ПД. Использование кластерного анализа выявило, что НПН вызывал сначала увеличение частоты ПД низкой амплитуды, распространяющиеся с низкой скоростью в волокнах С-типа, отвечающих на капсаицин; затем наблюдалось появление высокоамплитудных ПД, распространяющихся в Аδ-волокнах. Блокатор растворимой гуанилатциклазы – ODQ (10 мкМ) предотвращал НПН-вызванное увеличение электрической активности. При этом инкубация препарата в НПН не оказывала влияния на морфологию тучных клеток. Полученные данные свидетельствуют о том, что как экзогенный, так и эндогенный NO усиливают электрическую активность тройничного нерва путем активации гуанилатциклазы, оказывая вклад в периферические нейрональные механизмы возникновения боли при мигрени.

https://doi.org/10.31857/S0869813922060048
PDF

Литература

Hermann A, Sitdikova GF, Weiger TM (2013) Gasotransmitters: Physiology and pathophysiology. Gasotransmitters Physiol Pathophysiol 1–204. https://doi.org/10.1007/978-3-642-30338-8

Ситдикова ГФ, Яковлев АВ, Герасимова ОВ, Яковлева ОВ (2014) Газообразные посредники – оксид азота, монооксид углерода и сероводород – как новый класс сигнальных молекул межклеточных коммуникаций. В кн: Избранные главы фундаментальной и трансляционной медицины. Ред Жданов РИ Казань. Изд-во Казанск универ. 97–112. [Sitdikova GF, Yakovlev AV, Gerasimova OV, Yakovleva OV (2014) Gaseous mediators - nitric oxide, carbon monoxide and hydrogen sulfide - as a new class of signaling molecules of intercellular communications. In book: Selected Chapters of Fundamental and Translational Medicine. Zhdanov RI (ed) Kazan. Kazan Univer Press. 97–112. (In Russ)].

Кузнецова ВЛ, Соловьева АГ (2015) Оксид азота: свойства, биологическая роль, механизмы действия. Современные проблемы науки и образования. 4: 462–462. [Kuznetsova VL, Solovieva AG (2015) Nitric oxide: properties, biological role, mechanisms of action. Modern Problems Science Education. 4: 462–462. (In Russ)].

Метельская ВА, Гуманова НГ (2005) Оксид азота: роль в регуляции биологических функций, методы определения в крови человека. Лаб мед 7: 19–24. [Metelskaya VA, Gumanova NG (2005) Nitric oxide: role in the regulation of biological functions, methods of determination in human blood. Lab Med 7: 19–24. (In Russ)].

Львова ОА, Орлова АЕ, Гусев ВВ, Ковтун ОП, Чегодаев ДА (2010) К вопросу о роли оксида азота в норме и при патологии нервной системы. Системная интеграция в здравоохранении 4: 20–35. [Lvova OA, Orlova AE, Gusev VV, Kovtun OP, Chegodaev DA (2010) To the question of the role of nitric oxide in normal and pathological conditions of the nervous system. System Integrat Healthcare 4: 20–35. (In Russ)].

Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 176:213–254. https://doi.org/10.1007/3-540-32967-6_7

Chachlaki K, Garthwaite J, Prevot V (2017) The gentle art of saying NO: How nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 13:521–535. https://doi.org/10.1038/nrendo.2017.69

Pradhan AA, Bertels Z, Akerman S (2018) Targeted Nitric Oxide Synthase Inhibitors for Migraine. Neurotherapeutics 15:391–401. https://doi.org/10.1007/s13311-018-0614-7

Olesen J (2010) Nitric Oxide-Related Drug Targets in Headache. Neurotherapeutics 7:183–190. https://doi.org/10.1016/j.nurt.2010.03.006

Goadsby PJ (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 13:39–44. https://doi.org/10.1016/j.molmed.2006.11.005

Goadsby PJ (2009) Pathophysiology of Migraine. Neurol Clin 27:335–360. https://doi.org/10.1016/j.ncl.2008.11.012

Ashina M, Hansen JM, Á Dunga BO, Olesen J (2017) Human models of migraine-short-Term pain for long-Term gain. Nat Rev Neurol 13:713–724. https://doi.org/10.1038/nrneurol.2017.137

Bryan NS, Bian K, Murad F (2009) Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci 14:1–18. https://doi.org/10.2741/3228

Bonnet C, Hao J, Osorio N, Donnet A, Penalba V, Ruel J, Delmas P (2019) Maladaptive activation of Nav1.9 channels by nitric oxide causes triptan-induced medication overuse headache. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-019-12197-3

Bellamy J, Bowen EJ, Russo AF, Durham PL (2006) Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 23:2057–2066. https://doi.org/10.1111/j.1460-9568.2006.04742.x

Capuano A, De Corato A, Lisi L, Tringali G, Navarra P, Dello Russo C (2009) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: Relevance for migraine pathology. Mol Pain 5:1–13. https://doi.org/10.1186/1744-8069-5-43

Messlinger K, Lennerz JK, Eberhardt M, Fischer MJM (2012) CGRP and NO in the trigeminal system: Mechanisms and role in headache generation. Headache 52:1411–1427. https://doi.org/10.1111/j.1526-4610.2012.02212.x

Coleman JW (2002) Nitric oxide: A regulator of mast cell activation and mast cell-mediated inflammation. Clin Exp Immunol 129:4–10. https://doi.org/10.1046/j.1365-2249.2002.01918.x

Forsythe P, Gilchrist M, Kulka M, Befus AD (2001) Mast cells and nitric oxide: Control of production, mechanisms of response. Int Immunopharmacol 1:1525–1541. https://doi.org/10.1016/S1567-5769(01)00096-0

Pedersen SH, Ramachandran R, Amrutkar DV, Petersen S, Olesen J, Jansen-Olesen I (2015) Mechanisms of glyceryl trinitrate provoked mast cell degranulation. Cephalalgia 35:1287–1297. https://doi.org/10.1177/0333102415574846

Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, De La Roche J, Fischer M, Suárez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Martí MA, Doctorovich F, Högestätt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:1–17. https://doi.org/10.1038/ncomms5381

Dux M, Will C, Vogler B, Filipovic MR, Messlinger K (2016) Meningeal blood flow is controlled by H2S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 173:431–445. https://doi.org/10.1111/bph.13164

Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69:855–865. https://doi.org/10.1002/ana.22329

Yam MF, Loh YC, Tan CS, Adam SK, Manan NA, Basir R (2018) General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci 19. https://doi.org/10.3390/ijms19082164

Levy D, Strassman AM (2004) Modulation of dural nociceptor mechanosensitivity by the nitric oxide-cyclic GMP signaling cascade. J Neurophysiol 92:766–772. https://doi.org/10.1152/jn.00058.2004

Edvinsson L, Haanes KA, Warfvinge K (2019) Does inflammation have a role in migraine? Nat Rev Neurol 15:483–490. https://doi.org/10.1038/s41582-019-0216-y

Undem BJ, Riccio MM, Weinreich D, Ellis JL, Myers AC (1995) Neurophysiology of mast cell-nerve interactions in the airways. Int Arch Allergy Immunol 107:199–201. https://doi.org/10.1159/000236976

Spanos C, Pang X, Ligris K, Letourneau R, Alferes L, Alexacos N, Sant GR, Theoharides TC (1997) Stress-induced bladder mast cell activation: Implications for interstitial cystitis. J Urol 157:669–672. https://doi.org/10.1016/S0022-5347(01)65247-9

Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A (2005) The role of mast cells in migraine pathophysiology. Brain Res Rev 49:65–76. https://doi.org/10.1016/j.brainresrev.2004.11.006

Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130:166–176. https://doi.org/10.1016/j.pain.2007.03.012

Levy D (2009) Migraine pain, meningeal inflammation, and mast cells. Curr Pain Headache Rep 13:237–240. https://doi.org/10.1007/s11916-009-0040-y

Gilchrist M, McCauley SD, Befus AD (2004) Expression, localization, and regulation of NOS in human mast cell lines: Effects on leukotriene production. Blood 104:462–469. https://doi.org/10.1182/blood-2003-08-2990

McCauley SD, Gilchrist M, Befus AD (2005) Nitric oxide: A major determinant of mast cell phenotype and function. Mem Inst Oswaldo Cruz 100:11–14. https://doi.org/10.1590/S0074-02762005000900003

Forsythe P, Gilchrist M, Kulka M, Befus AD (2001) Mast cells and nitric oxide: Control of production, mechanisms of response. Int Immunopharmacol 1:1525–1541. https://doi.org/10.1016/S1567-5769(01)00096-0

De Col R, Messlinger K, Carr RW (2012) Repetitive activity slows axonal conduction velocity and concomitantly increases mechanical activation threshold in single axons of the rat cranial dura. J Physiol 590:725–736. https://doi.org/10.1113/jphysiol.2011.220624

Zakharov A, Vitale C, Kilinc E, Koroleva K, Fayuk D, Shelukhina I, Naumenko N, Skorinkin A, Khazipov R, Giniatullin R (2015) Hunting for origins of migraine pain: Cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers. Front Cell Neurosci 9:287. https://doi.org/10.3389/fncel.2015.00287

Shatillo A, Koroleva K, Giniatullina R, Naumenko N, Slastnikova AA, Aliev RR, Bart G, Atalay M, Gu C, Khazipov R, Davletov B, Grohn O, Giniatullin R (2013) Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 253:341–349. https://doi.org/10.1016/j.neuroscience.2013.09.002

Shimada A, Cairns BE, Vad N, Ulriksen K, Pedersen AML, Svensson P, Baad-Hansen L (2013) Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG). J Headache Pain 14:1–9. https://doi.org/10.1186/1129-2377-14-2

Gusel’nikova V V., Sukhorukova EG, Fedorova EA, Polevshchikov A V., Korzhevskii DE (2015) A Method for the Simultaneous Detection of Mast Cells and Nerve Terminals in the Thymus in Laboratory Mammals. Neurosci Behav Physiol 45:371–374. https://doi.org/10.1007/s11055-015-0084-x

Levy D (2010) Migraine pain and nociceptor activation - Where do we stand? Headache 50:909–916. https://doi.org/10.1111/j.1526-4610.2010.01670.x

Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210. https://doi.org/10.1038/35093019

Moran MM, McAlexander MA, Bíró T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620. https://doi.org/10.1038/nrd3456

Theoharides TC, Spanos C, Pang X, Alferes L, Ligris K, Letourneau R, Rozniecki JJ, Webster E, Chrousos GP (1995) Stress-induced intracranial mast cell degranulation: A corticotropin-releasing hormone-mediated effect. Endocrinology 136:5745–5750. https://doi.org/10.1210/endo.136.12.7588332

Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, Grundy D (2012) The Mast Cell Degranulator Compound 48/80 Directly Activates Neurons. PLoS One 7:e52104. https://doi.org/10.1371/journal.pone.0052104

Bartsch T, Goadsby PJ (2002) Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 125:1496–1509. https://doi.org/10.1093/brain/awf166

Bove GM, Moskowitz MA (1997) Primary afferent neurons innervating guinea pig dura. J Neurophysiol 77:299–308. https://doi.org/10.1152/jn.1997.77.1.299

Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982. https://doi.org/10.1152/jn.1998.79.2.964

Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16:157–168. https://doi.org/10.1002/ana.410160202

Moskowitz MA, Macfarlane R (1993) Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev 5:159–177.

Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142. https://doi.org/10.1038/nm0202-136

Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Koçak E, Sen ZD, Dalkara T (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science (80) 339:621. https://doi.org/10.1126/science.1231897

Thomsen LL (1997) Investigations into the role of nitric oxide and the large intracranial arteries in migraine headache. Cephalalgia 17:873–895. https://doi.org/10.1046/j.1468-2982.1997.1708873.x

Edvinsson L, Villalón CM, Maassenvandenbrink A (2012) Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 136:319–333. https://doi.org/10.1016/j.pharmthera.2012.08.011

Edvinsson L, Mulder H, Goadsby PJ, Uddman R (1998) Calcitonin gene-related peptide and nitric oxide in the trigeminal ganglion: Cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. J Auton Nerv Syst 70:15–22. https://doi.org/10.1016/S0165-1838(98)00033-2

Toda N (1993) Mediation by nitric oxide of neurally-induced human cerebral artery relaxation. Experientia 49:51–53. https://doi.org/10.1007/BF01928789

Ayajiki K, Fujioka H, Okamura T, Toda N (2001) Relatively selective neuronal nitric oxide synthase inhibition by 7-nitroindazole in monkey isolated cerebral arteries. Eur J Pharmacol 423:179–183. https://doi.org/10.1016/S0014-2999(01)01068-8

Guerrero-Toro C, Koroleva K, Ermakova E, Gafurov O, Abushik P, Tavi P, Sitdikova G, Giniatullin R (2022) Testing the Role of Glutamate NMDA Receptors in Peripheral Trigeminal Nociception Implicated in Migraine Pain. Int J Mol Sci 23:1529. https://doi.org/10.3390/ijms23031529

Colonna DM, Meng W, Deal DD, Busija DW (1994) Nitric oxide promotes arteriolar dilation during cortical spreading depression in rabbits. Stroke. https://europepmc.org/article/med/7526490. Accessed 17 Apr 2022

Colonna DM, Meng W, Deal DD, Gowda M, Busija DW (1997) Neuronal NO promotes cerebral cortical hyperemia during cortical spreading depression in rabbits. Am J Physiol Hear Circ Physiol 272. https://doi.org/10.1152/ajpheart.1997.272.3.h1315

Meng W, Colonna DM, Tobin JR, Busija DW (1995) Nitric oxide and prostaglandins interact to mediate arteriolar dilation during cortical spreading depression. Am J Physiol Hear Circ Physiol 269. https://doi.org/10.1152/ajpheart.1995.269.1.h176

Akerman S, Williamson DJ, Kaube H, Goadsby PJ (2002) Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br J Pharmacol 137:62–68. https://doi.org/10.1038/sj.bjp.0704842

Lassen LH, Ashina M, Christiansen I, Ulrich V, Olesen J (1997) Nitric oxide synthase inhibition in migraine. Lancet 349:401–402. https://doi.org/10.1016/S0140-6736(97)80021-9

Ashina M, Lassen LH, Bendtsen L, Jensen R, Olesen J (1999) Effect of inhibition of nitric oxide synthase on chronic tension-type headache: A randomised crossover trial. Lancet 353:287–289. https://doi.org/10.1016/S0140-6736(98)01079-4

De Col R, Koulchitsky S V, Messlinger KB (2003) Nitric oxide synthase inhibition lowers activity of neurons with meningeal input in the rat spinal trigeminal nucleus. Neuroreport 14:229–232. https://doi.org/10.1097/00001756-200302100-00014

Olesen J (2010) Nitric Oxide-Related Drug Targets in Headache. Neurotherapeutics 7:183–190. https://doi.org/10.1016/j.nurt.2010.03.006

Hoskin KL, Bulmer DCE, Goadsby PJ (1999) Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 266:173–176. https://doi.org/10.1016/S0304-3940(99)00281-5

Grossi L, D’Angelo S (2005) Sodium nitroprusside: Mechanism of NO release mediated by sulfhydryl-containing molecules. J Med Chem 48:2622–2626. https://doi.org/10.1021/jm049857n

MacIver MB, Tanelian DL (1993) Structural and functional specialization of Aδ and C fiber free nerve endings innervating rabbit corneal epithelium. J Neurosci 13:4511–4524. https://doi.org/10.1523/jneurosci.13-10-04511.1993

L. Neeb, U. Reuter (2008) Nitric Oxide in Migraine. CNS Neurol Disord - Drug Targets 6:258–264. https://doi.org/10.2174/187152707781387233

Klyachko VA, Ahern GP, Jackson MB (2001) cGMP-mediated facilitation in nerve terminals by enhancement of the spike afterhyperpolarization. Neuron 31:1015–1025. https://doi.org/10.1016/S0896-6273(01)00449-4

Al-Karagholi MAM, Ghanizada H, Waldorff Nielsen CA, Skandarioon C, Snellman J, Lopez-Lopez C, Hansen JM, Ashina M (2021) Opening of BKCa channels causes migraine attacks: a new downstream target for the treatment of migraine. Pain 162:2512–2520. https://doi.org/10.1097/j.pain.0000000000002238

Ben Aissa M, Tipton AF, Bertels Z, Gandhi R, Moye LS, Novack M, Bennett BM, Wang Y, Litosh V, Lee SH, Gaisina IN, Thatcher GRJ, Pradhan AA (2018) Soluble guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 38:1471–1484. https://doi.org/10.1177/0333102417737778

Bertels Z, Pradhan AAA (2019) Emerging Treatment Targets for Migraine and Other Headaches. Headache 59:50–65. https://doi.org/10.1111/head.13585

Ferreira J, Santos ARS, Calixto JB (1999) The role of systemic, spinal and supraspinal L-arginine-nitric oxide-cGMP pathway in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacology 38:835–842. https://doi.org/10.1016/S0028-3908(99)00006-4

Kawamata T, Omote K (1999) Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3’,5’-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 91:1415–1424. https://doi.org/10.1097/00000542-199911000-00035

Tao YX, Johns RA (2002) Activation and up-regulation of spinal cord nitric oxide receptor, soluble guanylate cyclase, after formalin injection into the rat hind paw. Neuroscience 112:439–446. https://doi.org/10.1016/S0306-4522(02)00075-1

Song XJ, Wang ZB, Gan Q, Walters ET (2006) cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression. J Neurophysiol 95:479–492. https://doi.org/10.1152/jn.00503.2005

Artico M, Cavallotti C (2001) Catecholaminergic and acetylcholine esterase containing nerves of cranial and spinal dura mater in humans and rodents. Microsc Res Tech 53:212–220. https://doi.org/10.1002/jemt.1085

Varatharaj A, MacK J, Davidson JR, Gutnikov A, Squier W (2012) Mast cells in the human dura: Effects of age and dural bleeding. Child’s Nerv Syst 28:541–545. https://doi.org/10.1007/s00381-012-1699-7

Dimlich RVW, Keller JT, Strauss TA, Fritts MJ (1991) Linear arrays of homogenous mast cells in the dura mater of the rat. J Neurocytol 20:485–503. https://doi.org/10.1007/BF01252276

Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, Pang X, Theoharides TC (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849:1–15. https://doi.org/10.1016/S0006-8993(99)01855-7

Strassman AM, Weissner W, Williams M, Ali S, Levy D (2004) Axon Diameters and Intradural Trajectories of the Dural Innervation in the Rat. J Comp Neurol 473:364–376. https://doi.org/10.1002/cne.20106

Dimitriadou V, Rouleau A, Trung Tuong MD, Newlands GJF, Miller HRP, Luffau G, Schwartz JC, Garbarg M (1997) Functional relationships between sensory nerve fibers and mast cells of dura mater in normal and inflammatory conditions. Neuroscience 77:829–839. https://doi.org/10.1016/S0306-4522(96)00488-5

Kilinc E, Tore F, Dagistan Y, Bugdayci G (2020) Thymoquinone Inhibits Neurogenic Inflammation Underlying Migraine Through Modulation of Calcitonin Gene-Related Peptide Release and Stabilization of Meningeal Mast Cells in Glyceryltrinitrate-Induced Migraine Model in Rats. Inflammation 43:264–273. https://doi.org/10.1007/s10753-019-01115-w

Ferrari LF, Levine JD, Green PG (2016) Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat. Neuroscience 317:121–129. https://doi.org/10.1016/j.neuroscience.2016.01.005

Olesen J, Iversen HK, Thomsen L (1993) Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuro Report. 4(8):1027–1030. https://doi.org/10.1097/00001756-199308000-00008

Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013 Jul; 33(9):629–808. https://doi.org/10.1177/0333102417738202

Jacobs B, Dussor G (2016) Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 338:130–144. https://doi.org/10.1016/j.neuroscience.2016.06.012

Li J, Vause C V, Durham PL (2008) Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 1196:22–32. https://doi.org/10.1016/j.brainres.2007.12.028

Messlinger K, Russo AF (2019) Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia 39:1661–1674. https://doi.org/10.1177/0333102418786261

Iyengar S, Johnson KW, Ossipov MH, Aurora SK (2019) CGRP and the Trigeminal System in Migraine. Headache 59:659–681. https://doi.org/10.1111/head.13529

Ashina M (2012) Vascular changes have a primary role in migraine. Cephalalgia 32 (5): 428–430. https://doi.org/10.1177/0333102412438978