ВТОРИЧНАЯ ДИСФУНКЦИЯ ЭНТЕРОГЕМАТИЧЕСКОГО БАРЬЕРА В ПАТОГЕНЕЗЕ ОСЛОЖНЕНИЙ ОСТРЫХ ЭКЗОГЕННЫХ ОТРАВЛЕНИЙ
PDF

Ключевые слова

аммиак
нормальная кишечная микрофлора
осложнение
острое отравление
эндотоксемия
эндотоксикоз
энтерогематический барьер

Как цитировать

Ивницкий, Ю. Ю., Шефер, Т. В., Рейнюк, В. Л., & Вакуненкова, О. А. (2022). ВТОРИЧНАЯ ДИСФУНКЦИЯ ЭНТЕРОГЕМАТИЧЕСКОГО БАРЬЕРА В ПАТОГЕНЕЗЕ ОСЛОЖНЕНИЙ ОСТРЫХ ЭКЗОГЕННЫХ ОТРАВЛЕНИЙ. Российский физиологический журнал им. И. М. Сеченова, 108(7), 807–835. извлечено от https://rusjphysiol.org/index.php/rusjphysiol/article/view/1616

Аннотация

Последнее десятилетие ознаменовано экспоненциальным ростом числа публикаций, посвящённых физиологической роли нормальной микробиоты желудочно-кишечного тракта человека. Представление о симбиотической связи человека с нормальной микробиотой его желудочно-кишечного тракта утвердилось как неотъемлемая часть медико-биологической парадигмы. Однако тип этого симбиоза варьирует от мутуализма до паразитизма и зависит от функционального состояния организма хозяина. Повреждение последнего внешними агентами может вести к возникновению у нормальной кишечной микробиоты условно патогенных свойств, опосредованных гуморальными факторами и влияющих на исход экзогенного воздействия. Неопределённое число веществ, продуцируемых нормальной кишечной микробиотой человека, обладает системной токсичностью. Некоторые из них кишечный химус содержит в количествах, которые, при быстром поступлении таких веществ в кровь, обеспечивают формирование в ней их потенциально летальных концентраций. Этому препятствует энтерогематический барьер — система структурных элементов, разделяющих кишечный химус и кровь. Его повреждение экзогенными токсикантами, обозначенное в настоящем обзоре как вторичная дисфункция энтерогематического барьера, может спровоцировать системное перераспределение токсичных веществ бактериального происхождения. До недавних пор влияние такого перераспределения на исход острых экзогенных отравлений оставалось вне фокуса внимания токсикологии. В настоящем обзоре исследованы причинно-следственные связи между вторичной дисфункцией энтерогематического барьера и осложнениями острых отравлений. Детализирована острая системная токсичность продуктов жизнедеятельности нормальной кишечной микрофлоры: аммиака и эндотоксина. Показана их вовлечённость в формирование ряда осложнений острых отравлений: шока, сепсиса, церебральной недостаточности и повреждений лёгких. Кратко изложены принципы оценки функционального состояния энтерогематического барьера и подходы к профилактике осложнений острых отравлений, основанные на роли энтерогематического барьера в их патогенезе.

PDF

Литература

Grishin SM (2018) Crimes committed by medical workers as a result of improper performance of their professional duties (based on the case-law of the European part of Russia 2015-2017). Medicina (Mex) 6:1–14. https://doi.org/10.29234/2308-9113-2018-6-1-1-14

Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T (2020) Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 57:389–399. https://doi.org/10.1080/10408363.2020.1770685

Ivnitsky JuJu, Schäfer TV, Rejniuk VL, Golovko AI (2022) Endogenous humoral determinants of vascular endothelial dysfunction as triggers of acute poisoning complications. J Appl Toxicol Online ahead of print. https://doi.org/10.1002/jat.4312

Vutukuri R, Brunkhorst R, Kestner R-I, Hansen L, Bouzas NF, Pfeilschifter J, Devraj K, Pfeilschifter W (2018) Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. J Neurochem 144:172–185. https://doi.org/10.1111/jnc.14236

Hill MJ (1995) Role of gut bacteria in human toxicology and pharmacology. London Bristol PA. Taylor & Francis.

Tang WHW, Kitai T, Hazen SL (2017) Gut Microbiota in Cardiovascular Health and Disease. Circ Res 120:1183–1196. https://doi.org/10.1161/CIRCRESAHA.117.309715

Choi T-Y, Choi YP, Koo JW (2020) Mental Disorders Linked to Crosstalk between The Gut Microbiome and The Brain. Exp Neurobiol 29:403–416. https://doi.org/10.5607/en20047

Lopetuso LR, Scaldaferri F, Bruno G, Petito V, Franceschi F, Gasbarrini A (2015) The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. Eur Rev Med Pharmacol Sci 19:1068–1076.

Gurwara S, Dai A, Ajami NJ, Graham DY, White DL, Chen L, Jang A, Chen E, El-Serag HB, Petrosino JF, Jiao L (2020) Alcohol use alters the colonic mucosa-associated gut microbiota in humans. Nutr Res 83:119–128. https://doi.org/10.1016/j.nutres.2020.09.004

Liu Z, Yang D, Gao J, Xiang X, Hu X, Li S, Wu W, Cai J, Tang C, Zhang D, Dong Z (2020) Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis. Theranostics 10:11963–11975. https://doi.org/10.7150/thno.50093

Gad SC (2018) Toxicology of the Gastrointestinal Tract. Boca Raton, Florida : CRC Press.

Lechuga S, Naydenov NG, Feygin A, Cruise M, Ervasti JM, Ivanov AI (2020) Loss of β-Cytoplasmic Actin in the Intestinal Epithelium Increases Gut Barrier Permeability in vivo and Exaggerates the Severity of Experimental Colitis. Front Cell Dev Biol 8:588836. https://doi.org/10.3389/fcell.2020.588836

Magnotti LJ, Upperman JS, Xu DZ, Lu Q, Deitch EA (1998) Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock. Ann Surg 228:518–527. https://doi.org/10.1097/00000658-199810000-00008

Schäfer TV, Ivnitsky JuJu, Rejniuk VL (2011) Cyclophosphamide-induced leakage of gastrointestinal ammonia into the common bloodstream in rats. Drug Chem Toxicol 34:25–31. https://doi.org/10.3109/01480545.2010.483518

Milan Manani S, Virzì GM, Giuliani A, Baretta M, Corradi V, De Cal M, Biasi C, Crepaldi C, Ronco C (2020) Lipopolysaccharide Evaluation in Peritoneal Dialysis Patients with Peritonitis. Blood Purif 49:434–439. https://doi.org/10.1159/000505388

Møller S, Kimer N, Barløse M, Bendtsen F (2020) Pathophysiological-based treatments of complications of cirrhosis. Scand J Gastroenterol 55:383–394. https://doi.org/10.1080/00365521.2020.1744709

Комаров БД, Лужников ЕА, Шиманко ИИ (1981) Хирургические методы лечения острых отравлений. М. Медицина. [Komarov BD, Luzhnikov EA, Shimanko II.(1981) Surgical treatments for acute poisoning. Moscow. Meditsina. (In Russ)].

Shi K, Wang F, Jiang H, Liu H, Wei M, Wang Z, Xie L (2014) Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci 59:2109–2117. https://doi.org/10.1007/s10620-014-3202-7

Travis S, Menzies I (1992) Intestinal permeability: functional assessment and significance. Clin Sci 82:471–488. https://doi.org/10.1042/cs0820471

Самойлов ВО (2013) Медицинская биофизика. Санкт-Петербург. СпецЛит. [Samoilov VO (2013) Medical biophysics. Saint-Petersburg. SpezLit (In Russ)].

Lin HC, Pimentel M (2005) Bacterial concepts in irritable bowel syndrome. Rev Gastroenterol Disord 5(3):S3-S9.

Sender R, Fuchs S, Milo R (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biol 14:e1002533. https://doi.org/10.1371/journal.pbio.1002533

Hunt RH, Camilleri M, Crowe SE, El-Omar EM, Fox JG, Kuipers EJ, Malfertheiner P, McColl KEL, Pritchard DM, Rugge M, Sonnenberg A, Sugano K, Tack J (2015) The stomach in health and disease. Gut 64:1650–1668. https://doi.org/10.1136/gutjnl-2014-307595

Walker V (2012) Severe hyperammonaemia in adults not explained by liver disease. Ann Clin Biochem Int J Lab Med 49:214–228. https://doi.org/10.1258/acb.2011.011206

Adamberg K, Jaagura M, Aaspõllu A, Nurk E, Adamberg S (2020) The composition of faecal microbiota is related to the amount and variety of dietary fibres. Int J Food Sci Nutr 71:845–855. https://doi.org/10.1080/09637486.2020.1727864

Rai R, Saraswat VA, Dhiman RK (2015) Gut Microbiota: Its Role in Hepatic Encephalopathy. J Clin Exp Hepatol 5:S29–S36. https://doi.org/10.1016/j.jceh.2014.12.003

O’Grady J, Murphy CL, Barry L, Shanahan F, Buckley M (2020) Defining gastrointestinal transit time using video capsule endoscopy: a study of healthy subjects. Endosc Int Open 8:E396–E400. https://doi.org/10.1055/a-1073-7653

Rodríguez-Hernández P, Cardador MJ, Arce L, Rodríguez-Estévez V (2020) Analytical Tools for Disease Diagnosis in Animals via Fecal Volatilome. Crit Rev Anal Chem 1–16. https://doi.org/10.1080/10408347.2020.1843130

Metchnikoff E (1907) Essais optimistes. Paris. A. Maloine

Ивницкий ЮЮ, Шефер ТВ, Рейнюк ВЛ (2012) Эндогенный аммиак в токсическом процессе. Palmarium Acad Publish. [Ivnitsky Yu Yu, Schaefer TV, Reinyuk VL (2012) Endogenous ammonia in a toxic process. Palmarium Acad Publish. (In Russ)].

Summerskill WHJ, Wolpert E (1970) Ammonia Metabolism in the Gut. Am J Clin Nutr 23:633–639. https://doi.org/10.1093/ajcn/23.5.633

Gips CH, Qué GS, Wibbens-Alberts M (1973) The arterial ammonia curve after oral and intraduodenal loading with ammonium acetate. Absorption in the stomach. Neth J Med 16:14–17.

Dobson GP, Veech RL, Passonneau JV, Huang MT (1990) In vivo portal-hepatic venous gradients of glycogenic precursors and incorporation of D-[3-3H]glucose into liver glycogen in the awake rat. J Biol Chem 265:16350–16357.

Ali R, Nagalli S (2021) Hyperammonemia. StatPearls Publ.

Hahn M, Massen O, Nencki M, Pawlow J (1893) Die Eck’sche Fistel zwischen der unteren Hohlvene und der Pfortader und ihre Folgen für den Organismus. Arch Für Exp Pathol Pharmakol 32:161–210. https://doi.org/10.1007/BF01995065

Pagana K, Pagana T, Pagana T (2021) Mosby’s manual of diagnostic and laboratory tests, 7th ed. Philadelphia. Elsevier Inc.

Agostini L, Down PF, Murison J, Wrong OM (1972) Faecal ammonia and pH during lactulose administration in man: comparison with other cathartics. Gut 13:859–866. https://doi.org/10.1136/gut.13.11.859

Scott TR (2013) Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol 19:9240. https://doi.org/10.3748/wjg.v19.i48.9240

Ott P, Vilstrup H (2014) Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis 29:901–911. https://doi.org/10.1007/s11011-014-9494-7

Skowrońska M, Albrecht J (2013) Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 62:731–737. https://doi.org/10.1016/j.neuint.2012.10.013

Tranah TH, Vijay GKM, Ryan JM, Shawcross DL (2013) Systemic inflammation and ammonia in hepatic encephalopathy. Metab Brain Dis 28:1–5. https://doi.org/10.1007/s11011-012-9370-2

Jayakumar AR, Norenberg MD (2018) Hyperammonemia in Hepatic Encephalopathy. J Clin Exp Hepatol 8:272–280. https://doi.org/10.1016/j.jceh.2018.06.007

McClung HJ, Sloan HR, Powers P, Merola AJ, Murray R, Kerzner B, Pollack JD (1990) Early changes in the permeability of the blood-brain barrier produced by toxins associated with liver failure. Pediatr Res 28:227–231. https://doi.org/10.1203/00006450-199009000-00014

Ochoa-Sanchez R, Rose CF (2018) Pathogenesis of Hepatic Encephalopathy in Chronic Liver Disease. J Clin Exp Hepatol 8:262–271. https://doi.org/10.1016/j.jceh.2018.08.001

Bested AC, Logan AC, Selhub EM (2013) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II - Contemporary contextual research. Gut Pathog 5:3. https://doi.org/10.1186/1757-4749-5-3

Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16:180. https://doi.org/10.1186/s12974-019-1564-7

Iba T, Levy JH, Hirota T, Hiki M, Sato K, Murakami T, Nagaoka I (2018) Protection of the endothelial glycocalyx by antithrombin in an endotoxin-induced rat model of sepsis. Thromb Res 171:1–6. https://doi.org/10.1016/j.thromres.2018.09.042

Minami T, Oda K, Gima N, Yamazaki H (2007) Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosal-administered mice. Environ Toxicol Pharmacol 24:316–320. https://doi.org/10.1016/j.etap.2007.08.004

Pfalzgraff A, Weindl G (2019) Intracellular Lipopolysaccharide Sensing as a Potential Therapeutic Target for Sepsis. Trends Pharmacol Sci 40:187–197. https://doi.org/10.1016/j.tips.2019.01.001

Yoshida N, Yamashita T, Kishino S, Watanabe H, Sasaki K, Sasaki D, Tabata T, Sugiyama Y, Kitamura N, Saito Y, Emoto T, Hayashi T, Takahashi T, Shinohara M, Osawa R, Kondo A, Yamada T, Ogawa J, Hirata K (2020) A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci Rep 10:13009. https://doi.org/10.1038/s41598-020-69983-z

Wideman RF, Erf GF, Chapman ME (2001) Intravenous Endotoxin Triggers Pulmonary Vasoconstriction and Pulmonary Hypertension in Broiler Chickens. Poult Sci 80:647–655. https://doi.org/10.1093/ps/80.5.647

Bermejo-Martin J, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R (2018) Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med 7:400. https://doi.org/10.3390/jcm7110400

Corrêa TD, Pereira AJ, Takala J, Jakob SM (2020) Regional venous-arterial CO2 to arterial-venous O2 content difference ratio in experimental circulatory shock and hypoxia. Intensive Care Med Exp 8:64. https://doi.org/10.1186/s40635-020-00353-9

Yeo IJ, Yun J, Son DJ, Han S-B, Hong JT (2020) Antifungal drug miconazole ameliorated memory deficits in a mouse model of LPS-induced memory loss through targeting iNOS. Cell Death Dis 11:623. https://doi.org/10.1038/s41419-020-2619-5

Wang L, Cao Y, Gorshkov B, Zhou Y, Yang Q, Xu J, Ma Q, Zhang X, Wang J, Mao X, Zeng X, Su Y, Verin AD, Hong M, Liu Z, Huo Y (2019) Ablation of endothelial Pfkfb3 protects mice from acute lung injury in LPS-induced endotoxemia. Pharmacol Res 146:104292. https://doi.org/10.1016/j.phrs.2019.104292

Jadhav K, Cohen TS (2020) Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Front Endocrinol 11:592157. https://doi.org/10.3389/fendo.2020.592157

Solé C, Guilly S, Da Silva K, Llopis M, Le-Chatelier E, Huelin P, Carol M, Moreira R, Fabrellas N, De Prada G, Napoleone L, Graupera I, Pose E, Juanola A, Borruel N, Berland M, Toapanta D, Casellas F, Guarner F, Doré J, Solà E, Ehrlich SD, Ginès P (2021) Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology 160:206-218.e13. https://doi.org/10.1053/j.gastro.2020.08.054

Nežić L, Škrbić R, Amidžić L, Gajanin R, Milovanović Z, Nepovimova E, Kuča K, Jaćević V (2020) Protective Effects of Simvastatin on Endotoxin-Induced Acute Kidney Injury through Activation of Tubular Epithelial Cells’ Survival and Hindering Cytochrome C-Mediated Apoptosis. Int J Mol Sci 21:E7236. https://doi.org/10.3390/ijms21197236

Soria LR, Marrone J, Molinas SM, Lehmann GL, Calamita G, Marinelli RA (2014) Lipopolysaccharide impairs hepatocyte ureagenesis from ammonia: Involvement of mitochondrial aquaporin-8. FEBS Lett 588:1686–1691. https://doi.org/10.1016/j.febslet.2014.03.012

Skowrońska M, Zielińska M, Wójcik-Stanaszek L, Ruszkiewicz J, Milatovic D, Aschner M, Albrecht J (2012) Ammonia increases paracellular permeability of rat brain endothelial cells by a mechanism encompassing oxidative/nitrosative stress and activation of matrix metalloproteinases: Ammonia-induced brain endothelium damage. J Neurochem 121:125–134. https://doi.org/10.1111/j.1471-4159.2012.07669.x

Zijlstra FJ, van Meeteren ME, Garrelds IM, Meijssen MAC (2003) Effect of pharmacologically induced smooth muscle activation on permeability in murine colitis. Mediators Inflamm 12:21–27. https://doi.org/10.1080/0962935031000096944

Wilms, Jonkers, Savelkoul, Elizalde, Tischmann, Vos, Masclee, Troost (2019) The Impact of Pectin Supplementation on Intestinal Barrier Function in Healthy Young Adults and Healthy Elderly. Nutrients 11:1554. https://doi.org/10.3390/nu11071554

Шефер ТВ, Рейнюк ВЛ, Краснов КА, Ивницкий ЮЮ (2011) Повышение циклофосфаном проницаемости тонкой кишки крыс для содержащихся в её просвете гидрофильных веществ средней молярной массы. Medline.ru. Рос биомед журн 12:1437–1449. [Schäfer TV, Rejniuk VL, Krasnov KA, Ivnitsky JuJu (2011) Increased permeability of a small intestine to luminal hydrophylic medium-sized molecules in cyclophosphamide-treated rats. Medline.ru. Russ Biomed J 12:1437–1449. (In Russ)].

Jiang Y, Bian Y, Lian N, Wang Y, Xie K, Qin C, Yu Y (2020) iTRAQ-Based Quantitative Proteomic Analysis of Intestines in Murine Polymicrobial Sepsis with Hydrogen Gas Treatment. Drug Des Devel Ther 14:4885–4900. https://doi.org/10.2147/DDDT.S271191

Di Palo DM, Garruti G, Di Ciaula A, Molina-Molina E, Shanmugam H, De Angelis M, Portincasa P (2020) Increased Colonic Permeability and Lifestyles as Contributing Factors to Obesity and Liver Steatosis. Nutrients 12:E564. https://doi.org/10.3390/nu12020564

Wick MJ, Harral JW, Loomis ZL, Dempsey EC (2018) An Optimized Evans Blue Protocol to Assess Vascular Leak in the Mouse. J Vis Exp 57037. https://doi.org/10.3791/57037

Alves NG, Motawe ZY, Yuan SY, Breslin JW (2018) Endothelial Protrusions in Junctional Integrity and Barrier Function. Curr Top Membr 82:93–140. https://doi.org/10.1016/bs.ctm.2018.08.006

Ijiri K, Potten CS (1983) Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation. Br J Cancer 47:175–185. https://doi.org/10.1038/bjc.1983.25

Куценко СА (2004) Основы токсикологии. СПб. Фолиант. [Kutsenko SA (2004) Fundamentals of Toxicology. Saint-Petersburg. Foliant Publishing House. (In Russ)].

Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, Keshavarzian A (2017) Alcohol and Gut-Derived Inflammation. Alcohol Res Curr Rev 38:163–171.

Zhao Y, Zhou C, Wu C, Guo X, Hu G, Wu Q, Xu Z, Li G, Cao H, Li L, Latigo V, Liu P, Cheng S, Liu P (2020) Subchronic oral mercury caused intestinal injury and changed gut microbiota in mice. Sci Total Environ 721:137639. https://doi.org/10.1016/j.scitotenv.2020.137639

Akbarali HI, Dewey WL (2017) The gut-brain interaction in opioid tolerance. Curr Opin Pharmacol 37:126–130. https://doi.org/10.1016/j.coph.2017.10.012

Puel O, Galtier P, Oswald I (2010) Biosynthesis and Toxicological Effects of Patulin. Toxins 2:613–631. https://doi.org/10.3390/toxins2040613

Karádi O, Nagy Z, Bódis B, Mózsik G (2001) Atropine-induced gastrointestinal cytoprotection dependences to the intact of vagal nerve against indomethacin-induced gastrointestinal mucosal and microvascular damage in rats. J Physiol (Paris) 95:29–33. https://doi.org/10.1016/s0928-4257(01)00006-7

Ishisono K, Mano T, Yabe T, Kitaguchi K (2019) Dietary Fiber Pectin Ameliorates Experimental Colitis in a Neutral Sugar Side Chain-Dependent Manner. Front Immunol 10:2979. https://doi.org/10.3389/fimmu.2019.02979

Ge L, Lin Z, Le G, Hou L, Mao X, Liu S, Liu D, Gan F, Huang K (2020) Nontoxic-dose deoxynivalenol aggravates lipopolysaccharides-induced inflammation and tight junction disorder in IPEC-J2 cells through activation of NF-κB and LC3B. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 145:111712. https://doi.org/10.1016/j.fct.2020.111712

Семёнов ЭИ, Мишина НН, Папуниди КХ (2019) Неучтенная анафилактическая реакция на действие микотоксинов. Medline.ru. Рос биомед журн 20:36–43. [Semenov EI, Mishina NN, Papunidi KKh (2019) Unaccounted anaphylactic reaction to effect of mycotoxins. Medline.ru. Russ Biomed J 20:36–43. (In Russ)].

McMillen KK, Coghlin-Dickson T, Adintori PA (2021) Optimization of nutrition support practices early after hematopoietic cell transplantation. Bone Marrow Transplant 56:314–326. https://doi.org/10.1038/s41409-020-01078-9

Ivnitsky YuYu, Schäfer TV, Tyaptin AA, Rejniuk VL (2019) Changes in the chemical composition of blood and brain of rats under the conditions of modeling of the myeloablation regimen of cyclophosphamide administration. Toxicol Rev 13–18. https://doi.org/10.36946/0869-7922-2019-3-13-18

Ivnitsky JuJu, Schäfer TV, Rejniuk VL (2011) Promotion of the Toxic Action of Cyclophosphamide by Digestive Tract Luminal Ammonia in Rats. ISRN Toxicol 2011:1–4. https://doi.org/10.5402/2011/450875

Rejniuk VL, Schäfer TV, Ivnitsky JuJu (2010) Increase of Ammonia Pool in the Gastrointestinal Tract of Rats Potentiates Acute Toxicity of Cyclophosphamide. Bull Exp Biol Med 149:718–720. https://doi.org/10.1007/s10517-010-1034-9

Khуzhnyak SV, Bezdrobna LK, Stepanova LI, Morozova VS, Voitsitskіy VM (2014) Oxidative phosphorylation in mitochondria of small-intestinal enterocytes at chronic and single exposure to low power ionizing radiation. Probl Rad Med Radiobiol 19:482–489.

Khanna K, Mishra KP, Chanda S, Eslavath MR, Ganju L, Kumar B, Singh SB (2019) Effects of Acute Exposure to Hypobaric Hypoxia on Mucosal Barrier Injury and the Gastrointestinal Immune Axis in Rats. High Alt Med Biol 20:35–44. https://doi.org/10.1089/ham.2018.0031

Hill GW, Gillum TL, Lee BJ, Romano PA, Schall ZJ, Hamilton AM, Kuennen MR (2020) Prolonged treadmill running in normobaric hypoxia causes gastrointestinal barrier permeability and elevates circulating levels of pro- and anti-inflammatory cytokines. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 45:376–386. https://doi.org/10.1139/apnm-2019-0378

Abuga KM, Muriuki JM, Williams TN, Atkinson SH (2020) How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children. Int J Mol Sci 21:E6976. https://doi.org/10.3390/ijms21186976

Khazoom F, L’Écuyer S, Gilbert K, Gagné M-A, Bouchard C, Rose CF, Rousseau G, Charbonney E (2020) Impact of uric acid on liver injury and intestinal permeability following resuscitated hemorrhagic shock in rats. J Trauma Acute Care Surg 89:1076–1084. https://doi.org/10.1097/TA.0000000000002868

Saxena A, Lopes F, McKay DM (2018) Reduced intestinal epithelial mitochondrial function enhances in vitro interleukin-8 production in response to commensal Escherichia coli. Inflamm Res 67:829–837. https://doi.org/10.1007/s00011-018-1172-5

Bär F, Bochmann W, Widok A, von Medem K, Pagel R, Hirose M, Yu X, Kalies K, König P, Böhm R, Herdegen T, Reinicke AT, Büning J, Lehnert H, Fellermann K, Ibrahim S, Sina C (2013) Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology 145:1055-1063.e3. https://doi.org/10.1053/j.gastro.2013.07.015

Звенигородская ЛА, Самсонова НГ, Топорков АС (2010) Хроническая ишемическая болезнь органов пищеварения: алгоритм диагностики и лечения. Рус мед журн 9:544–548. [Zvenigorodskaya LA, Samsonova NG, Toporkov AS (2010) Chronic ischemic disease of the digestive system: an algorithm for diagnosis and treatment. Russ Med Zhurn 9:544–548. (In Russ)].

Uno Y (2019) Hypothesis: Mechanism of irritable bowel syndrome in inflammatory bowel disease. Med Hypotheses 132:109324. https://doi.org/10.1016/j.mehy.2019.109324

Lychkova AE (2005) Gradients of serotoninergic innervation of the large intestine. Bull Exp Biol Med 139:550–553. https://doi.org/10.1007/s10517-005-0342-y

Deane AM, Chapman MJ, Reintam Blaser A, McClave SA, Emmanuel A (2019) Pathophysiology and Treatment of Gastrointestinal Motility Disorders in the Acutely Ill. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr 34:23–36. https://doi.org/10.1002/ncp.10199

Ivnitsky JuJu, Rejniuk VL, Schäfer TV, Malakhovsky VN (2006) Fulminant hyperammonaemia induced by thiopental coma in rats. Toxicology 224:184–190. https://doi.org/10.1016/j.tox.2006.04.002

Schäfer TV, Ivnitsky JuJu, Rejniuk VL (2022) Modelling myeloablative cytostatic therapy with cyclophosphamide is accompanied by gastrointestinal stasis in rats. Med Extrem Situat 1:51–55. https://doi.org/10.47183/mes.2022.001

Visek WJ (1972) Effects of urea hydrolysis on cell life-span and metabolism. Fed Proc 31:1178–1193.

Zhao J, He Y, Xu P, Liu J, Ye S, Cao Y (2020) Serum ammonia levels on admission for predicting sepsis patient mortality at D28 in the emergency department: A 2-center retrospective study. Medicine (Baltimore) 99:e19477. https://doi.org/10.1097/MD.0000000000019477

Horioka K, Tanaka H, Isozaki S, Konishi H, Fujiya M, Okuda K, Asari M, Shiono H, Ogawa K, Shimizu K (2020) Acute Colchicine Poisoning Causes Endotoxemia via the Destruction of Intestinal Barrier Function: The Curative Effect of Endotoxin Prevention in a Murine Model. Dig Dis Sci 65:132–140. https://doi.org/10.1007/s10620-019-05729-w

Lee SI, Kang KS (2017) Function of capric acid in cyclophosphamide-induced intestinal inflammation, oxidative stress, and barrier function in pigs. Sci Rep 7:16530. https://doi.org/10.1038/s41598-017-16561-5

Herbers AHE, de Haan AFJ, van der Velden WJFM, Donnelly JP, Blijlevens NMA (2014) Mucositis not neutropenia determines bacteremia among hematopoietic stem cell transplant recipients. Transpl Infect Dis Off J Transplant Soc 16:279–285. https://doi.org/10.1111/tid.12195

Mathieson PW, Thiru S, Oliveira DB (1992) Mercuric chloride-treated brown Norway rats develop widespread tissue injury including necrotizing vasculitis. Lab Investig J Tech Methods Pathol 67:121–129.

Winnard KP, Dmitrieva N, Berkley KJ (2006) Cross-organ interactions between reproductive, gastrointestinal, and urinary tracts: modulation by estrous stage and involvement of the hypogastric nerve. Am J Physiol-Regul Integr Comp Physiol 291:R1592–R1601. https://doi.org/10.1152/ajpregu.00455.2006

Matkevich VA, Luzhnikov EA, Belova MV, Yevdokimova NV, Syromyatnikova ED, Kurilkin YA (2015) The role of intestinal translocation in the origin of endotoxemia in acute poisoning and detoxification effect of intestinal lavage. Russ Sklifosovsky J Emerg Med Care 16–21.

Matkevich VA, Potskhveriya MM, Goldfarb YuS, Simonova AYu (2018) Violations of homeostasis parameters in acute poisonings and ways of their correction. Toxicol Rev 18–26. https://doi.org/10.36946/0869-7922-2018-3-18-26

Aburto-Fernández MDC, Araujo-López A, García-Godoy IU, Alvarado-González A, Gutiérrez-Samperio JL, de Orendáin AÁ-M, Ocio MAR, Arteaga-Villalba LR, Herrera-Díaz A, Jiménez-Ríos CO, Lerma-Alvarado RM (2019) Secondary colonic necrosis. Case report. Cir Cir 87:33–37. https://doi.org/10.24875/CIRU.18000656

Chaung WW, Brenner M, Yen H-T, Ochani ML, Jacob A, Wang P (2019) Recombinant human milk fat globule-EGF factor VIII (rhMFG-E8) as a therapy for sepsis after acute exposure to alcohol. Mol Med Camb Mass 25:52. https://doi.org/10.1186/s10020-019-0118-x

Johansson J-E, Hasséus B, Johansson P, Eklöf C, Ohman D, Stockelberg D (2009) Gut protection by palifermin during autologous haematopoietic SCT. Bone Marrow Transplant 43:807–811. https://doi.org/10.1038/bmt.2008.388

Guinan EC, Palmer CD, Mancuso CJ, Brennan L, Stoler-Barak L, Kalish LA, Suter EE, Gallington LC, Huhtelin DP, Mansilla M, Schumann RR, Murray JC, Weiss J, Levy O (2014) Identification of single nucleotide polymorphisms in hematopoietic cell transplant patients affecting early recognition of, and response to, endotoxin. Innate Immun 20:697–711. https://doi.org/10.1177/1753425913505122

Laemmle A, Hahn D, Hu L, Rüfenacht V, Gautschi M, Leibundgut K, Nuoffer J-M, Häberle J (2015) Fatal hyperammonemia and carbamoyl phosphate synthetase 1 (CPS1) deficiency following high-dose chemotherapy and autologous hematopoietic stem cell transplantation. Mol Genet Metab 114:438–444. https://doi.org/10.1016/j.ymgme.2015.01.002

Uygun V, Karasu G, Daloğlu H, Hazar V, Yeşilipek A (2015) Idiopathic hyperammonemia after hematopoietic stem cell transplantation: A case report. Pediatr Transplant 19:E104–E105. https://doi.org/10.1111/petr.12467

Webster LT (1965) Hepatic coma – a biochemical disorder of the brain. Gastroenterology 49:698–702.

Kimura A, Yoshida I, Ono E, Matsuishi T, Yoshino M, Yamashita F, Yamamoto M, Hashimoto T, Shinka T, Kuhara T (1986) Acute encephalopathy with hyperammonemia and dicarboxylic aciduria during calcium hopantenate therapy: a patient report. Brain Dev 8:601–605. https://doi.org/10.1016/s0387-7604(86)80006-7

Slyundin DG, Aleкhnovich AV, Ivanov VB, Livanov AS, Anuchin VV (2010) The pharmacological correction of hyperammoniemisis conditions at the criminal poisoning clozapine. Medline.ru. Russ Biomed J 11:518–525.

Kramer L, Bauer E, Schenk P, Steininger R, Vigl M, Mallek R (2003) Successful treatment of refractory cerebral oedema in ecstasy/cocaine-induced fulminant hepatic failure using a new high-efficacy liver detoxification device (FPSA-Prometheus). Wien Klin Wochenschr 115:599–603. https://doi.org/10.1007/BF03040456

Goldberg JE, Hamilton WK (1959) Blood ammonia levels during ether and cyclopropane anesthesia. Anesthesiology 20:836–841. https://doi.org/10.1097/00000542-195911000-00015

Yamamoto H (1993) Relationship among cyanide-induced encephalopathy, blood ammonia levels, and brain aromatic amino acid levels in rats. Bull Environ Contam Toxicol 50:274–281. https://doi.org/10.1007/BF00191733

Ивницкий ЮЮ, Шефер ТВ, Рейнюк ВЛ (2010) Перераспределение аммиака между пищеварительным трактом и кровью при моделировании алкогольной комы: роль в формировании летального исхода. Патол физиол экспер терапия 3:34–37[Ivnitsky JuJu, Schäfer TV, Rejniuk VL (2010) Redistribution of gastrointestinal ammonia into blood in alcohol coma rat: the role in lethal outcome. Patol fiziol eksperim terapiya 3:34–37. (In Russ)].

Watanabe A, Kuwabara Y (1994) Hyperammonemia induced in rats by inhalation anesthesia with ether. Res Exp Med (Berl) 194:157–164. https://doi.org/10.1007/BF02576376

Proudfoot AT, Bradberry SM, Vale JA (2006) Sodium fluoroacetate poisoning. Toxicol Rev 25:213–219. https://doi.org/10.2165/00139709-200625040-00002

Mitani S, Kadowaki S, Komori A, Sugiyama K, Narita Y, Taniguchi H, Ura T, Ando M, Sato Y, Yamaura H, Inaba Y, Ishihara M, Tanaka T, Tajika M, Muro K (2017) Acute hyperammonemic encephalopathy after fluoropyrimidine-based chemotherapy: A case series and review of the literature. Medicine (Baltimore) 96:e6874. https://doi.org/10.1097/MD.0000000000006874

Blennow G, Folbergrova J, Nilsson B, Siesjö BK (1979) Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res 179:129–146. https://doi.org/10.1016/0006-8993(79)90497-9

Maslinski PG, Loeb JA (2004) Pica-associated cerebral edema in an adult. J Neurol Sci 225:149–151. https://doi.org/10.1016/j.jns.2004.07.016

Foster WA, Schoenhals JA (1995) Hyperammonemia with severe methanol intoxication. West J Med 163:377–379.

Singh AK, Banister EW (1983) Tissue ammonia and amino acids in rats at various oxygen pressures. J Appl Physiol 54:438–444. https://doi.org/10.1152/jappl.1983.54.2.438

Simma B, Meister B, Deutsch J, Sperl W, Fend F, Öfner D, Margreiter R, Vogel W (1995) Fulminant hepatic failure in a child as a potential adverse effect of trimethoprim-sulphamethoxazole. Eur J Pediatr 154:530–533. https://doi.org/10.1007/BF02074828

Woo PYM, Woo AWY, Lam SW, Ko NMW, Ho JWK, Chu ACH, Kwan MCL, Chan Y, Wong H-T, Chan K-Y (2020) Incidence, Presentation, and Risk Factors for Sodium Valproate–Associated Hyperammonemia in Neurosurgical Patients: A Prospective, Observational Study. World Neurosurg 144:e597–e604. https://doi.org/10.1016/j.wneu.2020.09.027

Козлов НБ (1971) Аммиак, его обмен и роль в патологии. М. Медицина. [Kozlov NB (1971) Ammonia, its exchange and role in pathology. Moscow. Medicina. (In Russ)].

Gao C, Wang D, Li W, Guo X, Ma J, Xie Y (2020) [Value of blood ammonia on predicting the severity and prognosis of patients with sepsis: a prospective observation study]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 32:1315–1319. https://doi.org/10.3760/cma.j.cn121430-20200305-00210

Singla A, Kaur S, Kaur N, Gill C (2016) Arterial ammonia levels: Prognostic marker in traumatic hemorrhage. Int J Appl Basic Med Res 6:255. https://doi.org/10.4103/2229-516X.192601

Hagiwara A, Sakamoto T (2009) Clinical Significance of Plasma Ammonia in Patients With Traumatic Hemorrhage. J Trauma Inj Infect Crit Care 67:115–120. https://doi.org/10.1097/TA.0b013e3181a5e63e

Lin C-H, Chi C-H, Wu S-Y, Hsu H-C, Chang Y-H, Huang Y-Y, Chang C-J, Hong M-Y, Chan T-Y, Shih H-I (2013) Prognostic values of blood ammonia and partial pressure of ammonia on hospital arrival in out-of-hospital cardiac arrests. Am J Emerg Med 31:8–15. https://doi.org/10.1016/j.ajem.2012.04.037

Fujiwara Y, Ohnishi K, Horlad H, Saito Y, Shiraishi D, Takeya H, Yoshii D, Kaieda S, Hoshino T, Komohara Y (2020) CD163 deficiency facilitates lipopolysaccharide-induced inflammatory responses and endotoxin shock in mice. Clin Transl Immunol 9:e1162. https://doi.org/10.1002/cti2.1162

Luna M, Kamariski M, Principi I, Bocanegra V, Vallés PG (2021) Severely ill pediatric patients with Shiga toxin-associated hemolytic uremic syndrome (STEC-HUS) who suffered from multiple organ involvement in the early stage. Pediatr Nephrol 36:1499–1509. https://doi.org/10.1007/s00467-020-04829-4

Hu C, Sun J, Du J, Wen D, Lu H, Zhang H, Xue Y, Zhang A, Yang C, Zeng L, Jiang J (2019) The Hippo-YAP pathway regulates the proliferation of alveolar epithelial progenitors after acute lung injury. Cell Biol Int 43:1174–1183. https://doi.org/10.1002/cbin.11098

Thuijls G, Derikx JPM, Haan J-J de, Grootjans J, Bruïne A de, Masclee AAM, Heineman E, Buurman WA (2010) Urine-based Detection of Intestinal Tight Junction Loss. J Clin Gastroenterol 44:e14–e19. https://doi.org/10.1097/MCG.0b013e31819f5652

Храмых ТП, Долгих ВТ (2009) К вопросу об эндотоксемии при геморрагической гипотензии. Патол физиол эксперим терапия 1:28–29. [Khramykh TP, Dolgikh VT (2009) Endotoxemia in hemorrhagic hypotension. Patol fiziol eksperim terapiya 1:28–30. (In Russ)].

Kumar M, Kaeley N, Nagasubramanyam V, Bhardwaj BB, Kumar S, Kabi A, Arora P, Dhar M (2019) Single center experience of managing methanol poisoning in the hilly state of Uttarakhand: A cross sectional study. Int J Crit Illn Inj Sci 9:172–176. https://doi.org/10.4103/IJCIIS.IJCIIS_49_19

Chew CH, Cheng L-W, Huang W-T, Wu YM, Lee C-W, Wu M-S, Chen C-C (2020) Ultrahigh packing density next generation microtube array membrane: A novel solution for absorption-based extracorporeal endotoxin removal device. J Biomed Mater Res B Appl Biomater 108:2903–2911. https://doi.org/10.1002/jbm.b.34621

Novosad SA, Sapiano MRP, Grigg C, Lake J, Robyn M, Dumyati G, Felsen C, Blog D, Dufort E, Zansky S, Wiedeman K, Avery L, Dantes RB, Jernigan JA, Magill SS, Fiore A, Epstein L (2016) Vital Signs: Epidemiology of Sepsis: Prevalence of Health Care Factors and Opportunities for Prevention. MMWR Morb Mortal Wkly Rep 65:864–869. https://doi.org/10.15585/mmwr.mm6533e1

Śmiechowicz J (2022) The Rationale and Current Status of Endotoxin Adsorption in the Treatment of Septic Shock. J Clin Med 11:619. https://doi.org/10.3390/jcm11030619

Chen S, Xiu G, Zhou J, Liu P, Chen X, Sun J, Ling B (2020) [Role of high mobility group box 1 in intestinal mucosal barrier injury in rat with sepsis induced by endotoxin]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 32:803–807. https://doi.org/10.3760/cma.j.cn121430-20200109-00126

Colbert JF, Schmidt EP (2016) Endothelial and Microcirculatory Function and Dysfunction in Sepsis. Clin Chest Med 37:263–275. https://doi.org/10.1016/j.ccm.2016.01.009

Soltanian A, Mosallanejad B, Razi Jalali M, Najafzadeh Varzi H, Ghorbanpoor M (2020) Comparative evaluation of the therapeutic effects of silymarin and hydrocortisone on clinical and hematological alterations, and organ injury (liver and heart) in low-dose canine lipopolysaccharide-induced sepsis model. Vet Res Forum 11:235–241. https://doi.org/10.30466/vrf.2018.83961.2105

Pool R, Gomez H, Kellum JA (2018) Mechanisms of Organ Dysfunction in Sepsis. Crit Care Clin 34:63–80. https://doi.org/10.1016/j.ccc.2017.08.003

Maniatis NA, Kotanidou A, Catravas JD, Orfanos SE (2008) Endothelial pathomechanisms in acute lung injury. Vascul Pharmacol 49:119–133. https://doi.org/10.1016/j.vph.2008.06.009

Wang W, Weng J, Yu L, Huang Q, Jiang Y, Guo X (2018) Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulm Med 18:178. https://doi.org/10.1186/s12890-018-0735-0

Forrester SJ, Xu Q, Kikuchi DS, Okwan-Duodu D, Campos AC, Faidley EA, Zhang G, Lassègue B, Sadikot RT, Griendling KK, Hernandes MS (2019) Poldip2 deficiency protects against lung edema and vascular inflammation in a model of acute respiratory distress syndrome. Clin Sci Lond Engl 133:321–334. https://doi.org/10.1042/CS20180944

Al‐Ani B, ShamsEldeen AM, Kamar SS, Haidara MA, Al‐Hashem F, Alshahrani MY, Al‐Hakami AM, Kader DHA, Maarouf A (2022) Lipopolysaccharide induces acute lung injury and alveolar haemorrhage in association with the cytokine storm, coagulopathy and AT1R/JAK/STAT augmentation in a rat model that mimics moderate and severe Covid‐19 pathology. Clin Exp Pharmacol Physiol 49:483–491. https://doi.org/10.1111/1440-1681.13620

Bloom PP, Rodriguez-Lopez J, Witkin AS, Al-Samkari H, Kuter DJ, Mojtahed A, Luther J (2020) Ammonia Predicts Hepatic Involvement and Pulmonary Hypertension in Patients With Hereditary Hemorrhagic Telangiectasia. Clin Transl Gastroenterol 11:e00118. https://doi.org/10.14309/ctg.0000000000000118

Liang X-Y, Jia T-X, Zhang M (2021) Intestinal bacterial overgrowth in the early stage of severe acute pancreatitis is associated with acute respiratory distress syndrome. World J Gastroenterol 27:1643–1654. https://doi.org/10.3748/wjg.v27.i15.1643

Шилов ВВ, Александров МВ, Васильев СА, Александрова ТВ, Черный ВС (2010) Острая церебральная недостаточность при тяжелых отравлениях. Medline.ru. Рос биомед журн 11:315–321. [Shilov VV, Aleksandrov MV, Vasilev SA, Aleksandrova TV, Chernyi VS (2010) Acute cerebral failure at the serious poisoning. Medline.ru. Russ Biomed J 11(art. 25):315–321. (In Russ)].

Sheikh MF, Unni N, Agarwal B (2018) Neurological Monitoring in Acute Liver Failure. J Clin Exp Hepatol 8:441–447. https://doi.org/10.1016/j.jceh.2018.04.013

Pang R, Martinello KA, Meehan C, Avdic-Belltheus A, Lingam I, Sokolska M, Mutshiya T, Bainbridge A, Golay X, Robertson NJ (2020) Proton Magnetic Resonance Spectroscopy Lactate/N-Acetylaspartate Within 48 h Predicts Cell Death Following Varied Neuroprotective Interventions in a Piglet Model of Hypoxia-Ischemia With and Without Inflammation-Sensitization. Front Neurol 11:883. https://doi.org/10.3389/fneur.2020.00883

Wood T, Moralejo D, Corry K, Fisher C, Snyder JM, Acuna V, Holden-Hunt A, Virk S, White O, Law J, Parikh P, Juul SE (2019) A Ferret Model of Inflammation-sensitized Late Preterm Hypoxic-ischemic Brain Injury. J Vis Exp (153):e60131. https://doi.org/10.3791/60131

Zhou Y, Huang X, Zhao T, Qiao M, Zhao X, Zhao M, Xu L, Zhao Y, Wu L, Wu K, Chen R, Fan M, Zhu L (2017) Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice. Brain Behav Immun 64:266–275. https://doi.org/10.1016/j.bbi.2017.04.013

Chicherin IYu, Pogorelsky IP, Lundovskikh IA, Gavrilov KE, Shabalina MR, Darmov IV (2013) Autoprobiotic therapy. J Infectology 5:43—54. https://doi.org/10.22625/2072-6732-2013-5-4-43-54

Shenderov BA (2011) Probiotics and Functional Foods. In: Food Engineering. Oxford, UK. EOLSS Publishers. p 36.

Suvorov A (2013) Gut Microbiota, Probiotics, and Human Health. Biosci Microbiota Food Health 32:81–91. https://doi.org/10.12938/bmfh.32.81

Gromova LV, Ermolenko EI, Sepp AL, Dmitrieva YV, Alekseeva AS, Lavrenova NS, Kotyleva MP, Kramskaya TA, Karaseva AB, Suvorov AN, Gruzdkov AA (2021) Gut Digestive Function and Microbiome after Correction of Experimental Dysbiosis in Rats by Indigenous Bifidobacteria. Microorganisms 9:522. https://doi.org/10.3390/microorganisms9030522

Шефер ТВ, Ивницкий ЮЮ, Рейнюк ВЛ (2015) Влияние сока подорожника на проявления и исход острой интоксикации циклофосфаном у крыс. Биопрепараты 3:61–63. [Schäfer TV, Ivnitsky JuJu, Rejniuk VL (2015) The influence of the plantain juice on the manifestations and outcome of acute cyclophosphamide intoxication in rats. Biopreparaty 55(3):61–64. (In Russ)].

Sabando C, Ide W, Rodríguez-Díaz M, Cabrera-Barjas G, Castaño J, Bouza R, Müller N, Gutiérrez C, Barral L, Rojas J, Martínez F, Rodríguez-Llamazares S (2020) A Novel Hydrocolloid Film Based on Pectin, Starch and Gunnera tinctoria and Ugni molinae Plant Extracts for Wound Dressing Applications. Curr Top Med Chem 20:280–292. https://doi.org/10.2174/1568026620666200124100631

Çağan E, Ceylan S, Mengi Ş, Çağan HH (2017) Evaluation of Gelatin Tannate Against Symptoms of Acute Diarrhea in Pediatric Patients. Med Sci Monit Int Med J Exp Clin Res 23:2029–2034. https://doi.org/10.12659/msm.903158

Rinaldi B, Cuzzocrea S, Donniacuo M, Capuano A, Di Palma D, Imperatore F, Mazzon E, Di Paola R, Sodano L, Rossi F (2011) Hyperbaric oxygen therapy reduces the toll-like receptor signaling pathway in multiple organ failures. Intensive Care Med 37:1110–1119. https://doi.org/10.1007/s00134-011-2241-1

Alshami A, Einav S, Skrifvars MB, Varon J (2020) Administration of inhaled noble and other gases after cardiopulmonary resuscitation: A systematic review. Am J Emerg Med 38:2179–2184. https://doi.org/10.1016/j.ajem.2020.06.066

Assimakopoulos SF, Papadopoulou I, Bantouna D, de Lastic A-L, Rodi M, Mouzaki A, Gogos CA, Zolota V, Maroulis I (2021) Fecal Microbiota Transplantation and Hydrocortisone Ameliorate Intestinal Barrier Dysfunction and Improve Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis. Shock Augusta Ga 55:666–675. https://doi.org/10.1097/SHK.0000000000001566