ДЕЙСТВИЕ АНАКИНРЫ НА ЭКСПРЕССИЮ ГЕНОВ РЕЦЕПТОРОВ, АКТИВИРУЕМЫХ ПЕРОКСИСОМНЫМ ПРОЛИФЕРАТОРОМ В МОЗГЕ КРЫС В ЛИТИЙ-ПИЛОКАРПИНОВОЙ МОДЕЛИ ЭПИЛЕПСИИ
PDF

Ключевые слова

литий-пилокарпиновая модель эпилепсии
рецепторы, активируемые пероксисомным пролифератором
антагонист рецепторов интерлейкина 1
анакинра

Как цитировать

Рогинская, А. И., Дёмина, А. В., Коваленко, А. А., Захарова, М. В., Шварц, А. П., Мелик-Касумов, Т. Б., & Зубарева, О. Е. (2022). ДЕЙСТВИЕ АНАКИНРЫ НА ЭКСПРЕССИЮ ГЕНОВ РЕЦЕПТОРОВ, АКТИВИРУЕМЫХ ПЕРОКСИСОМНЫМ ПРОЛИФЕРАТОРОМ В МОЗГЕ КРЫС В ЛИТИЙ-ПИЛОКАРПИНОВОЙ МОДЕЛИ ЭПИЛЕПСИИ. Российский физиологический журнал им. И. М. Сеченова, 108(4), 490–504. https://doi.org/10.31857/S0869813922040070

Аннотация

В последние годы широко обсуждается роль нейровоспаления в механизмах эпилептогенеза. Одним из факторов, влияющих на воспалительные процессы в мозге, может быть изменение экспрессии ядерных транскрипционных факторов, в частности, рецепторов, активируемых пероксисомным пролифератором (PPARs). Агонисты этих рецепторов обладают выраженным нейропротекторным действием в моделях эпилепсии. Исследования, проведенные на клетках различных тканей организма, выявляют тесную функциональную связь, существующую между генами PPARs, провоспалительного цитокина интерлейкина -1 (IL-1β) и противовоспалительного цитокина – антагониста рецепторов интерлейкина 1 (IL-1ra). Целью данной работы явилось изучение особенностей экспрессии генов Ppars в структурах мозга крыс в литий-пилокарпиновой модели эпилепсии и оценка возможного влияния IL-1ra (препарат анакинра) на эти показатели.

Пилокарпин вводили крысам Вистар в возрасте 7 - 8 недель, через сутки после инъекций LiCl. Введение анакинры осуществляли в течение недели после пилокарпина (первая инъекция 100 мкг/кг через час после судорог, далее - 5 дней по 100 мкг/кг и 2 дня по 50 мкг/кг), после чего производился забор образцов мозга для биохимического анализа. Оценку экспрессии генов Ppara, Ppard и Pparg производили методом обратной транскрипции с последующей полимеразной цепной реакцией в реальном времени в дорзальном и вентральном гиппокампе, височной коре и миндалине. Показано, что пилокарпин-индуцированные судороги приводят к усилению экспрессии генов Ppard и Pparg в вентральном гиппокампе и снижению экспрессии гена Ppara во всех обследованных областях мозга. Анакинра усиливает снижение экспрессии гена Ppara, не влияет на продукцию мРНК Ppard и нивелирует усиление экспрессии гена Pparg. Таким образом, экспрессия генов Ppars в мозге меняется в процессе эпилептогенеза, анакинра разнонаправлено регулирует продукцию мРНК Ppara и Pparg, но не влияет на экспрессию гена Ppard.

https://doi.org/10.31857/S0869813922040070
PDF

Литература

Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C-S, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N (2017) Prevalence and incidence of epilepsy. Neurology 88:296–303. https://doi.org/10.1212/WNL.0000000000003509

Fattorusso A, Matricardi S, Mencaroni E, Dell’Isola GB, Di Cara G, Striano P, Verrotti A (2021) The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Front Neurol 12:674483. https://doi.org/10.3389/fneur.2021.674483

Sears SM, Hewett SJ (2021) Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med 246:1069–1083. https://doi.org/10.1177/1535370221989263

Pracucci E, Pillai V, Lamers D, Parra R, Landi S (2021) Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 22:6981. https://doi.org/10.3390/ijms22136981

Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184 . https://doi.org/10.1016/j.tins.2012.11.008

Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803. https://doi.org/10.1016/j.bbi.2008.03.009

Dyomina A V., Zubareva OE, Smolensky I V., Vasilev DS, Zakharova M V., Kovalenko AA, Schwarz AP, Ischenko AM, Zaitsev A V (2020) Anakinra Reduces Epileptogenesis, Provides Neuroprotection, and Attenuates Behavioral Impairments in Rats in the Lithium–Pilocarpine Model of Epilepsy. Pharmaceuticals 13:340. https://doi.org/10.3390/ph13110340

Mazarati AM, Pineda E, Shin D, Tio D, Taylor AN, Sankar R (2010) Comorbidity between epilepsy and depression: Role of hippocampal interleukin-1β. Neurobiol Dis 37:461–467. https://doi.org/10.1016/j.nbd.2009.11.001

Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33:171–181. https://doi.org/10.1016/j.nbd.2008.10.002

Korbecki J, Bobiński R, Dutka M (2019) Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 68:443–458. https://doi.org/10.1007/s00011-019-01231-1

Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC (2017) PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev 92:2046–2069. https://doi.org/10.1111/brv.12320

Hong F, Pan S, Guo Y, Xu P, Zhai Y (2019) PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules 24:2545. https://doi.org/10.3390/molecules24142545

Fidaleo M, Fanelli F, Ceru M, Moreno S (2014) Neuroprotective Properties of Peroxisome Proliferator-Activated Receptor Alpha (PPARα) and its Lipid Ligands. Curr Med Chem 21:2803–2821. https://doi.org/10.2174/0929867321666140303143455

Heneka M, Landreth G (2007) PPARs in the brain. Biochim Biophys Acta - Mol Cell Biol Lipids 1771:1031–1045. https://doi.org/10.1016/j.bbalip.2007.04.016

Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr J 13:17. https://doi.org/10.1186/1475-2891-13-17

Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273. https://doi.org/10.1016/S0960-0760(03)00214-0

Strosznajder AK, Wójtowicz S, Jeżyna MJ, Sun GY, Strosznajder JB (2021) Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. NeuroMolecular Med 23:86–98. https://doi.org/10.1007/s12017-020-08629-9

Hong S, Xin Y, HaiQin W, GuiLian Z, Ru Z, ShuQin Z, HuQing W, Li Y, Ning B, YongNan L (2013) The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 63:405–412. https://doi.org/10.1016/j.neuint.2013.07.010

Sun H, Huang Y, Yu X, Li Y, Yang J, Li R, Deng Y, Zhao G (2008) Peroxisome proliferator‐activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine‐induced status epilepticus in rats. Int J Dev Neurosci 26:505–515. https://doi.org/10.1016/j.ijdevneu.2008.01.009

Porta N, Vallée L, Lecointe C, Bouchaert E, Staels B, Bordet R, Auvin S (2009) Fenofibrate, a peroxisome proliferator-activated receptor-α agonist, exerts anticonvulsive properties. Epilepsia 50(4):943-948. https://doi.org/10.1111/j.1528-1167.2008.01901.x

Wong S-B, Cheng S-J, Hung W-C, Lee W-T, Min M-Y (2015) Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy. PLoS One 10:e0144806. https://doi.org/10.1371/journal.pone.0144806

O’Léime CS, Cryan JF, Nolan YM (2017) Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 66:394–412. https://doi.org/10.1016/j.bbi.2017.07.153

Stienstra R, Mandard S, Tan NS, Wahli W, Trautwein C, Richardson TA, Lichtenauer-Kaligis E, Kersten S, Müller M (2007) The Interleukin-1 receptor antagonist is a direct target gene of PPARα in liver. J Hepatol 46:869–877. https://doi.org/10.1016/j.jhep.2006.11.019

Mráček T, Cannon B, Houštěk J (2004) IL-1 and LPS but not IL-6 inhibit differentiation and downregulate PPAR gamma in brown adipocytes. Cytokine 26:9–15. https://doi.org/10.1016/j.cyto.2003.12.001

Ahmed Juvale II, Che Has AT (2020) The evolution of the pilocarpine animal model of status epilepticus. Heliyon 6:e04557. https://doi.org/10.1016/j.heliyon.2020.e04557

Phelan KD, Shwe UT, Williams DK, Greenfield LJ, Zheng F (2015) Pilocarpine-induced status epilepticus in mice: A comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale. Epilepsy Res 117:90–96. https://doi.org/10.1016/j.eplepsyres.2015.09.008

Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier.

Cernecka H, Doka G, Srankova J, Pivackova L, Malikova E, Galkova K, Kyselovic J, Krenek P, Klimas J (2016) Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat. Eur J Pharmacol 791:244–253. https://doi.org/10.1016/j.ejphar.2016.08.040

Chistyakov D V., Aleshin SE, Astakhova AA, Sergeeva MG, Reiser G (2015) Regulation of peroxisome proliferator-activated receptors (PPAR) α and -γ of rat brain astrocytes in the course of activation by toll-like receptor agonists. J Neurochem 134:113–124. https://doi.org/10.1111/JNC.13101

Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA (2004) Lin. J Neurophysiol 92:2909–2919. https://doi.org/10.1152/jn.01198.2003

Swijsen A, Nelissen K, Janssen D, Rigo J-M, Hoogland G (2012) Validation of reference genes for quantitative real-time PCR studies in the dentate gyrus after experimental febrile seizures. BMC Res Notes 5:685. https://doi.org/10.1186/1756-0500-5-685

Schwarz AP, Malygina DA, Kovalenko AA, Trofimov AN, Zaitsev A V. (2020) Multiplex qPCR assay for assessment of reference gene expression stability in rat tissues/samples. Mol Cell Probes 53:101611. https://doi.org/10.1016/j.mcp.2020.101611

Malkin SL, Amakhin D V, Veniaminova EA, Kim KK, Zubareva OE, Magazanik LG, Zaitsev A V (2016) Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience 327:146–155. https://doi.org/10.1016/j.neuroscience.2016.04.024

Cook NL, Vink R, Donkin JJ, van den Heuvel C (2009) Validation of reference genes for normalization of real-time quantitative RT-PCR data in traumatic brain injury. J Neurosci Res 87:34–41. https://doi.org/10.1002/jnr.21846

Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G (2008) Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 9:53. https://doi.org/10.1186/1471-2199-9-53

Adabi Mohazab R, Javadi-Paydar M, Delfan B, Dehpour AR (2012) Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Res 101:28–35. https://doi.org/10.1016/j.eplepsyres.2012.02.015

Saha L, Bhandari S, Bhatia A, Banerjee D, Chakrabarti A (2014) Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model. J Epilepsy Res 4:45–54. https://doi.org/10.14581/jer.14011

Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB (2020) The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem Res 45:972–988. https://doi.org/10.1007/s11064-020-02993-5

Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–93. https://doi.org/10.1038/nature01921

Sihag J, Jones PJH (2018) Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour. Obes Rev 19:178–197. https://doi.org/10.1111/obr.12630

Pan W, Liu C, Zhang J, Gao X, Yu S, Tan H, Yu J, Qian D, Li J, Bian S, Yang J, Zhang C, Huang L, Jin J (2019) Association Between Single Nucleotide Polymorphisms in PPARA and EPAS1 Genes and High-Altitude Appetite Loss in Chinese Young Men. Front Physiol 10:59. https://doi.org/10.3389/fphys.2019.00059

Curia G, Longo D, Biagini G, Jones RSG, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157. https://doi.org/10.1016/j.jneumeth.2008.04.019

Carta AR (2013) PPARγ: Therapeutic Prospects in Parkinson’s Disease. Curr Drug Targets 14:743–751. https://doi.org/10.2174/1389450111314070004

Chang KL, Wong LR, Pee HN, Yang S, Ho PC-L (2019) Reverting Metabolic Dysfunction in Cortex and Cerebellum of APP/PS1 Mice, a Model for Alzheimer’s Disease by Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Agonist. Mol Neurobiol 56:7267–7283. https://doi.org/10.1007/s12035-019-1586-2

Ormerod BK, Hanft SJ, Asokan A, Haditsch U, Lee SW, Palmer TD (2013) PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness. Brain Behav Immun 29:28–38. https://doi.org/10.1016/j.bbi.2012.10.017

Peng J, Wang K, Xiang W, Li Y, Hao Y, Guan Y (2019) Rosiglitazone polarizes microglia and protects against pilocarpine‐induced status epilepticus. CNS Neurosci Ther 25:1363–1372. https://doi.org/10.1111/cns.13265

Hong S, Xin Y, HaiQin W, GuiLian Z, Ru Z, ShuQin Z, HuQing W, Li Y, Yun D (2012) The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci 33:559–566. https://doi.org/10.1007/s10072-011-0774-2

Prashantha Kumar BR, Kumar AP, Jose JA, Prabitha P, Yuvaraj S, Chipurupalli S, Jeyarani V, Manisha C, Banerjee S, Jeyabalan JB, Mohankumar SK, Dhanabal SP, Justin A (2020) Minutes of PPAR-γ agonism and neuroprotection. Neurochem Int 140:104814. https://doi.org/10.1016/j.neuint.2020.104814

INESTROSA N, GODOY J, QUINTANILLA R, KOENIG C, BRONFMAN M (2005) Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304:91–104. https://doi.org/10.1016/j.yexcr.2004.09.032

Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin K-J, Gao Y, Bennett MVL, Leak RK, Chen J (2018) Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 163–164:27–58. https://doi.org/10.1016/j.pneurobio.2017.10.002

Wu J-S, Tsai H-D, Cheung W-M, Hsu CY, Lin T-N (2016) PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription. Mol Neurobiol 53:3626–3645. https://doi.org/10.1007/s12035-015-9294-z

Bernardo A, Minghetti L (2006) PPAR-gamma agonists as Regulators of Microglial Activation and Brain Inflammation. Curr Pharm Des 12:93–109. https://doi.org/10.2174/138161206780574579

Ji H, Wang H, Zhang F, Li X, Xiang L, Aiguo S (2010) PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflamm Res 59:921–929. https://doi.org/10.1007/s00011-010-0203-7

Arsenijevic D, de Bilbao F, Plamondon J, Paradis E, Vallet P, Richard D, Langhans W, Giannakopoulos P (2006) Increased Infarct Size and Lack of Hyperphagic Response after Focal Cerebral Ischemia in Peroxisome Proliferator-Activated Receptor β-Deficient Mice. J Cereb Blood Flow Metab 26:433–445. https://doi.org/10.1038/sj.jcbfm.9600200

Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, Lu Y, Wang X, Liang J, Zhang X (2020) Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res 45:837–850. https://doi.org/10.1007/s11064-020-02956-w

Borges K (2003) Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 182:21–34. https://doi.org/10.1016/S0014-4886(03)00086-4